
Programming Languages
and Techniques

(CIS1200)

Lecture 29

Enumerations and Iteration
Chapter 25

Announcements (1)
• HW07: PennPals
– Programming with Java Collections
– Due Tuesday, November 12 at 11.59pm

• Midterm 2: Friday, November 15th

– Similar to Midterm 1
– Content: HW 4 – 6, Chapters 11-21 (Java Arrays) and

Chapter 32 (Encapsulation) of lecture notes

2

Announcements (2)
• Midterm 2: Friday, November 15
– Coverage: up to Monday, Oct. 28 (Chapters 11-21,

32)
– During lecture (001 @ 10.15am, 002 @ noon)

Last names: A – Z Meyerson Hall B1

– 60 minutes; closed book, closed notes
– Review Material
• old exams on the web site (“schedule” tab)

– Review Session
• TBA

Review: Overriding equals

Correct Implementation: Point
@Override

 public boolean equals(Object obj) {
 if (this == obj)
 { return true; }

if (obj == null)
{ return false; }

if (getClass() != obj.getClass())
{ return false; }

Point other = (Point) obj;
 if (x != other.x)
 { return false; }
 if (y != other.y)
 { return false; }
 return true;
 }

Check whether obj is a Point

“dynamic cast” or “type cast”
“downcast” or “coercion”

The class cast expression "(T)e" is a runtime test of the dynamic class of of e.
If T is not a subtype of the dynamic class, then a ClassCastException is thrown.
The static type of the expression "(T)e" is T.

Compatibility with compareTo
• For classes that implement the Comparable<E> interface, the

equals and compareTo methods should agree:
– o.compareTo(p) == 0 exactly when o.equals(p)

@Override
public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass())
 return false;
 Point point = (Point) o;
 return (this.compareTo(point) == 0);

 }

Implement equals by using
compareTo.

Overriding Equality in Practice
• This is all a bit complicated!
• Fortunately, some tools (e.g. IntelliJ) can autogenerate

equality methods of the kind we developed.
– Just need to specify which fields should be taken into account.
– (and you should know why some comparisons use == and some use

.equals)

Iterating over collections

iterators, while, for, for-each loops

Iterator and Iterable

interface Iterator<E> {
 boolean hasNext();
 E next();
 default void delete(); // optional
 default void forEachRemaining(..); // optional
}

interface Iterable<E> {
 Iterator<E> iterator();
}

Challenge: given a List<Book> how would you add each book’s
data to a catalogue using an iterator?

interface Collection<E> extends Iterable<E> …

While Loops

List<Book> shelf = … // create a list of Books

// iterate through the elements on the shelf
Iterator<Book> iter = shelf.iterator();
while (iter.hasNext()) {
 Book book = iter.next();
 catalogue.addInfo(book);
 numBooks = numBooks+1;
}

// repeat body until condition becomes false
while (condition) {
 body
}

boolean guard expression
statement

syntax:

example:

For Loops

for (init-stmt; condition; next-stmt) {
 body
}

List<Book> shelf = … // create a list of Books

// iterate through the elements on the shelf
for (Iterator<Book> iter = shelf.iterator();
 iter.hasNext();) {
 Book book = iter.next();
 catalogue.addInfo(book);
 numBooks = numBooks+1;
}

init-stmt;
while (condition) {
 body
 next-stmt;
}

syntax: equivalent while loop:

For-each Loops

// repeat body for each element in collection
for (type var : coll) {
 body
}

Array of E or instance of Iterable<E> element type E

syntax:

example:

List<Book> shelf = … // create a list of books

// iterate through the elements on a shelf
for (Book book : shelf) {
 catalogue.addInfo(book);
 numBooks = numBooks+1;
}

For-each Loops (cont’d)

int[] arr = … // create an array of ints

// count the non-null elements of an array
for (int elt : arr) {
 if (elt != 0) cnt = cnt+1;
}

For-each can be used to iterate over arrays or any class that implements the
Iterable<E> interface (notably Collection<E> and its subinterfaces).

Another example:

Iterator example
public static void iteratorExample() {
 List<Integer> nums = new LinkedList<>();
 nums.add(1);
 nums.add(2);
 nums.add(7);

 int numElts = 0;
 int sumElts = 0;
 Iterator<Integer> iter =
 nums.iterator();
 while (iter.hasNext()) {
 Integer v = iter.next();
 sumElts = sumElts + v;
 numElts = numElts + 1;
 }

 System.out.println("sumElts = " + sumElts);
 System.out.println("numElts = " + numElts);
 }

What is printed by iteratorExample()?
1. sumElts = 0 numElts = 0
2. sumElts = 3 numElts = 2
3. sumElts = 10 numElts = 3
4. NullPointerException
5. Something else

Answer: 3

Another Iterator example
public static void nextNextExample() {
 List<Integer> nums = new LinkedList<>();
 nums.add(1);
 nums.add(2);
 nums.add(7);

 int sumElts = 0;
 int numElts = 0;
 Iterator<Integer> iter =
 nums.iterator();
 while (iter.hasNext()) {
 Integer v = iter.next();
 sumElts = sumElts + v;
 v = iter.next();
 numElts = numElts + v;
 }
 System.out.println("sumElts = " + sumElts);
 System.out.println("numElts = " + numElts);
 }

What is printed by nextNextExample()?
1. sumElts = 0 numElts = 0
2. sumElts = 3 numElts = 2
3. sumElts = 8 numElts = 2
4. NullPointerException
5. Something else

Answer: 5 NoSuchElementException

For-each version

public static void forEachExample() {
 List<Integer> nums = new LinkedList<>();
 nums.add(1);
 nums.add(2);
 nums.add(7);

 int numElts = 0;
 int sumElts = 0;
 for (Integer v : nums) {
 sumElts = sumElts + v;
 numElts = numElts + 1;
 }

 System.out.println("sumElts = " + sumElts);
 System.out.println("numElts = " + numElts);
 }

Enumerations

Enumerations (a.k.a. Enum Types)
• Java supports enumerated type constructors

– Intended to represent constant data values

• Intuitively similar to a simple usage of OCaml datatypes
– …but each language provides extra bells and whistles that the other

does not

enum CommandType {
 CREATE, INVITE, JOIN, KICK, LEAVE, MESG, NICK
}

Enums with data

• Multi-way branch, similar to OCaml’s match
– Works for: primitive data ‘int’, ‘byte’, ‘char’, etc., plus Enum types and

String
– Not as powerful as OCaml pattern matching! (Cannot bind

“arguments” of an Enum)

• The default keyword specifies a “catch all” (wildcard) case

public enum ServerResponse {
 OKAY(200),
 INVALID_NAME(401),
 NO_SUCH_CHANNEL(402),
 NO_SUCH_USER(403),
 USER_NOT_IN_CHANNEL(404),
 USER_NOT_OWNER(406),
 JOIN_PRIVATE_CHANNEL(407),
 INVITE_TO_PUBLIC_CHANNEL(408),
 NAME_ALREADY_IN_USE(500),
 CHANNEL_ALREADY_EXISTS(501);

 // The integer associated with this enum value
 private final int value;

 ServerResponse(int value) {
 this.value = value;
 }

 public int getCode() {
 return value;
 }
}

Elements of the enum
can be declared along

with “parameters”

When the object representing
each element is created, the

associated parameters are passed
to the constructor method.

Enums are Classes
• Enums are a convenient way of defining a class along with some

standard static methods

valueOf : converts a String to an Enum
 CommandType c = CommandType.valueOf("CREATE");

values: returns an array of all the enumerated constants
 CommandType[] varr = CommandType.values();

• Implicitly extend class java.lang.Enum
• Can include specialized constructors, fields and methods, as in

ServerResponse

Using Enums: Switch

• Multi-way branch, similar to OCaml’s match
– Works for: primitive data ‘int’, ‘byte’, ‘char’, etc., plus enum types and

String
– Not as powerful as OCaml pattern matching! (Yet!*)

• The default keyword specifies a “catch all” (wildcard) case
• Must indicate end of each case using break or return

// Use of 'enum'
CommandType t = …

switch (t) {
 case CREATE : System.out.println("Got CREATE!"); break;
 case MESG : System.out.println("Got MESG!"); break;
 default : System.out.println("default");
}

*ML-style pattern matching that binds variables, etc., has been a "preview feature"
of recent versions of Java, and is slowly being integrated into the main design.

What will be printed by the following program?

1. Got CREATE!
2. Got MESG!
3. Got NICK!
4. default
5. something else

CommandType t = CommandType.CREATE;

switch (t) {
 case CREATE : System.out.println("Got CREATE!");
 case MESG : System.out.println("Got MESG!");
 case NICK : System.out.println("Got NICK!");
 default : System.out.println("default");
}

Answer: 5 something else!

break
• GOTCHA: By default, each branch will “fall through” into the

next, so that code actually prints:

• Use an explicit break statement to avoid fall-through:

Got CREATE!
Got MESG!
Got NICK!
default

switch (t) {
case CREATE : System.out.println("Got CREATE!");

break;
case MESG : System.out.println("Got MESG!");

break;
case NICK : System.out.println("Got NICK!");

break;
default: System.out.println("default");
}

Alternative Option – switch Expressions
• Introduced in Java 14
• No need for break statements to prevent fall through
• Read more here -

https://docs.oracle.com/en/java/javase/14/language/switch-
expressions.html

switch (t) {
 case CREATE -> System.out.println("Got CREATE!");
 case MESG -> System.out.println("Got MESG!");
 case NICK -> System.out.println("Got NICK!");
 default -> System.out.println("default");
}

https://docs.oracle.com/en/java/javase/14/language/switch-expressions.html
https://docs.oracle.com/en/java/javase/14/language/switch-expressions.html

Alternative Option – switch Expressions
• (Similar to OCaml pattern matching), these are expressions

and evaluate to a single value
• (Similar to OCaml pattern matching), these must be

exhaustive

int x = switch (t) {
 case CREATE -> 5;
 case MESG -> 10;
 case NICK -> 15;
 default -> 20;
}

Some Advice on Debugging

Use the Scientific Method
1. Make an observation / ask a question

– One of my test cases fails!
– Which assertion? What exception? What is the stack trace?

2. Formulate a hypothesis
– Could I have passed null as bar to foo.munge(bar)?

3. Conduct an experiment
– Modify the program to try to confirm / refute the hypothesis.
– Don't make random changes!
– You should try to predict the effects of your experiment
– Re-run test cases

4. Analyze the results
– Did the modified code behave as expected?

5. Draw conclusions / Report results
– Create a new test case (if appropriate)

Observing Behavior
• Understand exceptions and the stack trace

– They give you a lot of information

• If you are using and IDE (like IntelliJ), it is worth taking a little
time to learn how to use the debugger!
– create “breakpoints” that stop the program and let you inspect the

state of the abstract machine

• Simple print statements are also very effective!
– Confirm or disprove hypothesis
– Can sometimes be easier to control than the debugger
– e.g.: The code reached "HERE!" (or not)

Exceptions

Dealing with the unexpected

Why do methods “fail”?
• Some methods expect their arguments to satisfy conditions

– Input to max must be a nonempty list, Item must be non-null, more
elements must be available when calling next, …

• Interfaces may be imprecise
– Some Iterators don't support the "remove" operation

• External components of a system might fail
– Try to open a file or resource that doesn't exist

• Resources might be exhausted
– Program uses all of the computer's

memory or disk space

• These are all exceptional circumstances…
– How do we deal with them?

Error 404
Page Not Found!

Ways to handle failure
• Return an error value (or default value)

– e.g. Math.sqrt returns NaN ("not a number") if given input < 0
– e.g. Many Java libraries return null
– e.g. file reading method returns -1 if no more input available
– Caller is supposed to check return value, but it’s easy to forget L
– Use with caution – easy to introduce nasty bugs! L

• Use an informative result
– e.g. in OCaml we used options to signal potential failure
– Passes responsibility to caller, who must do the proper

check to extract value

• Use exceptions
– Available both in OCaml and Java
– Any caller (not just the immediate one) can handle the exception
– If an exception is not caught, the program terminates

Exceptions
• An exception is an object representing an abnormal condition

– Its internal state describes what went wrong
– e.g.: NullPointerException,

IllegalArgumentException,
IOException

– Can define your own exception classes

• Throwing an exception is an emergency exit from the current
context
– The exception propagates up the invocation stack until it either

reaches the top of the stack, in which case the program aborts with
the error, or the exception is caught

• Catching an exception lets callers take appropriate actions to
handle the abnormal circumstances
– Java uses try / catch blocks to handle exceptions.

Example from Pennstagram HW
private void load(String filename) {
 ImageIcon icon;

 try {
 if ((new File(filename)).exists())
 icon = new ImageIcon(filename);

else {
java.net.URL u = new java.net.URL(filename);

 icon = new ImageIcon(u);
 }
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 …
}

Simplified Example

What happens if we do (new C()).foo() ?
1. Program stops without printing anything
2. Program prints “here in bar”, then stops
3. Program prints “here in bar”, then “here in foo”, then stops
4. Something else

class C {
 public void foo() {
 this.bar();
 System.out.println("here in foo");
 }
 public void bar() {
 this.baz();
 System.out.println("here in bar");
 }
 public void baz() {
 throw new RuntimeException();
 }
}

Answer: 4* (*well… depends on whether you count stderr as "printing")

Abstract Stack Machine
Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine
Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine

C

Workspace Stack

().foo();

Heap

Allocate a new instance of C in the heap. (Skipping
details of trivial constructor for C.)

Abstract Stack Machine

C

Workspace Stack

().foo();

Heap

Abstract Stack Machine

C

Workspace Stack

this.bar();
System.out.println(
 “here in foo”);

Heap

_;

this

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the this pointer,
followed by arguments (in this case none) onto the stack.
Use the dynamic class to look up the method body from the
class table.

Abstract Stack Machine

C

Workspace Stack

this.bar();
System.out.println(
 “here in foo”);

Heap

_;

this

Abstract Stack Machine

C

Workspace Stack

this.baz();
System.out.println(
 “here in bar”);

Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

Abstract Stack Machine

C

Workspace Stack

this.baz();
System.out.println(
 “here in bar”);

Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

Abstract Stack Machine

C

Workspace Stack

throw new
RuntimeException();

Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
System.out.println(
 “here in bar”);

this

Abstract Stack Machine

C

Workspace Stack

throw new
RuntimeException();

Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
System.out.println(
 “here in bar”);

this

Abstract Stack Machine

C

Workspace Stack

throw ();

Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
System.out.println(
 “here in bar”);

this

RuntimeEx
ception

Abstract Stack Machine

C

Workspace Stack

throw ();

Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
System.out.println(
 “here in bar”);

this

RuntimeEx
ception

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
a try/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catch is found,
abort the program with an error.

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
System.out.println(
 “here in bar”);

this

RuntimeEx
ception

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
a try/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catch is found,
abort the program with an error.

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
System.out.println(
 “here in bar”);

RuntimeEx
ception

Try/Catch
for ()? No!

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
a try/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catch is found,
abort the program with an error.

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

RuntimeEx
ception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Try/Catch
for ()?

No!

Abstract Stack Machine

C

Workspace Stack Heap

_;

RuntimeEx
ception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Try/Catch
for ()? No!

Abstract Stack Machine

C

Workspace Stack Heap

RuntimeEx
ception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Program terminated with
uncaught exception ()!

Catching the Exception

Now what happens if we do (new C()).foo();?

class C {
 public void foo() {
 this.bar();
 System.out.println("here in foo");
 }
 public void bar() {

try {
this.baz();

} catch (Exception e) { System.out.println("caught"); }
 System.out.println("here in bar");
 }
 public void baz() {
 throw new RuntimeException();
 }
}

Abstract Stack Machine
Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine
Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine

C

Workspace Stack

().foo();

Heap

Allocate a new instance of C in the heap.

Abstract Stack Machine

C

Workspace Stack

().foo();

Heap

Abstract Stack Machine

C

Workspace Stack

this.bar();
System.out.println(
 “here in foo”);

Heap

_;

this

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the this pointer,
followed by arguments (in this case none) onto the stack.

Abstract Stack Machine

C

Workspace Stack

this.bar();
System.out.println(
 “here in foo”);

Heap

_;

this

try {
 baz();
} catch (Exception e)
{ System.out.Println
 (“caught”); }
System.out.println(
 “here in bar”);

try {
baz();

} catch (Exception e)
{ System.out.println
(“caught”); }

System.out.println(
 “here in bar”);

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this
When executing a try/catch block,
push onto the stack a new
workspace that contains all of the
current workspace except for the
try { … } code.

Replace the current workspace
with the body of the try.

try {
 baz();
} catch (Exception e)
{ System.out.Println
 (“caught”); }
System.out.println(
 “here in bar”);

try {
baz();

} catch (Exception e)
{ System.out.println
(“caught”); }

System.out.println(
 “here in bar”);

Abstract Stack Machine

C

Workspace Stack

this.baz();

Heap

_;

this

_;
System.out.println(
 “here in foo”);

this
When executing a try/catch block,
push onto the stack a new
workspace that contains all of the
current workspace except for the
try { … } code.

Replace the current workspace
with the body of the try.

_;
catch (Exception e) {
System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

Body of the try.

Everything else.

Abstract Stack Machine

C

Workspace Stack

this.baz();

Heap

_;

this

_;
System.out.println(
 “here in foo”);

this
Continue executing as normal.

_;
catch (Exception e) {
System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

The top of the stack is off the
bottom of the page… J

_;
catch (Exception e) {
System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

throw new
RuntimeException();

_;

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
catch (Exception e) {
System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

throw new
RuntimeException();

_;

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
catch (Exception e) {
System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

_;

throw ();

Runtime
Exception

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
catch (Exception e) {
System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

_;

throw ();

Runtime
Exception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
catch (Exception e) {
System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

_;

Runtime
Exception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Try/Catch
for ()? No!

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

_;
catch (Exception e) {
System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

RuntimeEx
ception

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then replace
the workspace with catch body
and the rest of the saved
workspace.

Continue executing as usual.

Try/Catch
for ()?

Yes!

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

RuntimeEx
ception

e

{ System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then replace
the workspace with catch body
and the rest of the saved
workspace.

Continue executing as usual.

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

Runtime
Exception

Continue executing as usual.

e

{ System.out.println
 (“caught”); }
System.out.println(
 “here in bar”);

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

Runtime
Exception

e

{ ; }
System.out.println(
 “here in bar”);

Console
caught

Continue executing as usual.

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

Runtime
Exception

e

{ ; }
System.out.println(
 “here in bar”);

Console
caught

We’re sweeping a few details about
lexical scoping of variables under
the rug – the scope of e is just the
body of the catch, so when that is
done, e must be popped from the
stack too.

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

Runtime
Exception

Continue executing as usual.

System.out.println(
 “here in bar”);

Console
caught

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

Runtime
Exception

Continue executing as usual.

System.out.println(
 “here in bar”);

Console
caught

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
 “here in foo”);

this

Runtime
Exception

Pop the stack when the workspace
is done, returning to the saved
workspace just after the _ mark.

;

Console
caught
here in bar

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

System.out.println(
 “here in foo”);

Runtime
Exception

Continue executing as usual.

Console
caught
here in bar

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

System.out.println(
“here in foo”);

Runtime
Exception

Continue executing as usual.

Console
caught
here in bar

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

;

Runtime
Exception

Continue executing as usual.

Console
caught
here in bar
here in foo

Abstract Stack Machine

C

Workspace Stack Heap

Runtime
Exception

Program terminated normally.

Console
caught
here in bar
here in foo

When No Exception is Thrown
If no exception is thrown while executing the body of a try {…}
block, evaluation skips the corresponding catch block.

– i.e. if you ever reach a workspace where “catch” is the statement to
run, just skip it:

catch
(RuntimeException e)
{ System.out.Println
(“caught”); }

System.out.println(
 “here in bar”);

Workspace

System.out.println(
 “here in bar”);

Workspace

Catching Exceptions
There can be more than one “catch” clause associated with a given “try”

– Matched in order, according to the dynamic class of the exception thrown
– Helps refine error handling

• Good style: be as specific as possible about the exceptions you’re
handling.
– Avoid catch (Exception e) {…} it’s usually too generic!

try {
 … // do something with the IO library
} catch (FileNotFoundException e) {
 … // handle an absent file
} catch (IOException e) {
 … // handle other kinds of IO errors.
}

