
Programming Languages
and Techniques

(CIS1200)

Lecture 31

I/O & Histogram Demo
Chapter 28

Announcements (1)
• Midterm 2: Friday, November 15th

– Similar to Midterm 1
– Content: HW 4 – 6, Chapters 11-21 (Java Arrays) and

Chapter 32 (Encapsulation) of lecture notes

• Dr. Sheth will have extra office hours
– Thursday from 2-4pm, Levine 264

• HW08: TwitterBot*
– Released soon; due on November 26th

– Practice with I/O and Collections

2* Maybe should be called "XBot" or
"TheProjectFormerlyKnownAsTwitterBot"?

Announcements (2)
• Midterm 2: Friday, November 15
– Coverage: up to Monday, Oct. 28 (Chapters 11-21,

32)
– During lecture (001 @ 10.15am, 002 @ noon)

Last names: A – Z Meyerson Hall B1

– 60 minutes; closed book, closed notes
– Review Material
• old exams on the web site (“schedule” tab)

– Review Session
• Tonight, Towne 100 (will be recorded)

HW9: Game Project

4

HW9: Game project
• Game Design Proposal Milestone Due: (8 points)

Thursday, November 21st at Midnight = 11:59PM!
– (Should take about 1 hour)
– Submit on GRADESCOPE
– TAs will give you feedback soon

• Final Program Due: (92 points)
 Monday, December 9th at 11:59pm
– Submit zipfile online, submission only checks if your code compiles
– IntelliJ is strongly recommended for this project
– You may distribute your game (after the deadline) if you do not use any of our code

• Grade based on demo with your TA during/after reading days
– Grading rubric on the assignment website
– Recommendation: don’t be too ambitious.

• NO LATE SUBMISSIONS PERMITTED
5

Announcements (4)
• TA position applications are available
– CIS 1100, 1200, 1600, 1210 (see
https://tinyurl.com/2tn2t22f)

– Other CIS and NETS classes (see
https://www.cis.upenn.edu/ta-information/)

– Accepting applications until
Friday, November 22nd

– Intro CIS TA Panel
• Recording should be available

https://tinyurl.com/2tn2t22f
https://www.cis.upenn.edu/ta-information/

Review: Exceptions

Exceptions
• Exceptions are just objects that affect control flow:
• Raise an exception with:

throw new ExceptionType();
– aborts the current execution context (workspace)
– "unwinds" the stack, searching for a matching catch block

• Handle exceptions using try/catch:
try { /* code */ }
catch (ExceptionType e) { /* handler */ }
– runs code
– if code raises an exception that is a subtype of ExceptionType,

intercept its stack unwinding and run the handler

Exception Class Hierarchy

RuntimeException

Exception Error

Object

Throwable

IllegalArgumentException

IOException

Type of all
throwable objects.

Other subtypes of
Exception must be

declared.

Subtypes of
RuntimeException
do not have to be

declared.

Fatal Errors: should
never be caught.

FileNotFoundException

Checked (Declared) Exceptions
• Exceptions that are subtypes of Exception but not RuntimeException

are called checked or declared.

• A method that might throw a checked exception must declare it using a
“throws” clause in the method type.

• The method might raise a checked exception either by:
– directly throwing such an exception

– or by calling another method that might itself throw a checked exception

public void doSomeIO (String file) throws IOException {
 Reader r = new FileReader(file); // might throw
 …

public void maybeDoIt (String file) throws AnException{
 if (…) throw new AnException(); //directly throw
 …

Unchecked (Undeclared) Exceptions
• Subclasses of RuntimeException do not need to be declared via “throws”

– even if the method does not explicitly handle them.

• Many “pervasive” types of errors cause RuntimeExceptions
– NullPointerException
– IndexOutOfBoundsException
– IllegalArgumentException

• The original intent was that such exceptions represent disastrous
conditions from which it was impossible to sensibly recover…

public void mightFail (String file) {
 if (file.equals(“dictionary.txt”) {
 // file could be null!
 …

Declared vs. Undeclared?
• Tradeoffs in the software design process:

• Declared: better documentation
– forces callers to acknowledge that the exception exists

• Undeclared: fewer static guarantees (compiler can help less)
– but, much easier to refactor code

• In practice: test-driven development encourages “fail early/fail often”
model of code design and lots of code refactoring, so “undeclared”
exceptions are prevalent.

• A reasonable compromise:
– Use declared exceptions for libraries, where the documentation and usage

enforcement are critical
– Use undeclared exceptions in client code to facilitate more flexible

development

Finally

• A finally clause of a try/catch/finally statement always
gets run, regardless of whether there is no exception, a
propagated exception, or a caught exception.

try {
 ...
} catch (Exn1 e1) {
 ...
} catch (Exn2 e2) {
 ...
} finally {
 ...
}

Using Finally
class C {
 public void foo() {
 this.bar();
 System.out.println("here in foo");
 }
 public void bar() {
 try {
 this.baz();

} catch (Exception e) {
System.out.println("caught");

 } finally { System.out.println("finally"); }
 System.out.println("here in bar");
 }
 public void baz() {
 throw new RuntimeException();
 }
 } What happens if we do (new C()).foo() ?

1. Program prints only "finally"
2. Program prints "here in bar", then "here in foo", then "finally"
3. Program prints "finally", then "caught", then "here in foo"
4. Program prints "caught", then "finally", then "here in bar", then

"here in foo"

Answer: 4

Good Style for Exceptions
• In Java, exceptions should be used to capture exceptional

circumstances
– Try/catch/throw incur performance costs and complicate reasoning

about the program, don’t use them when better solutions exist

• Re-use existing exception types when they are meaningful to
the situation
– e.g. use NoSuchElementException when implementing a container

• Define your own subclasses of Exception if doing so can
convey useful information to possible callers that can handle
the exception.

Good Style for Exceptions
• It is often sensible to catch one exception and re-throw a

different (more meaningful) kind of exception.
– e.g., when implementing WordScanner (in upcoming lectures), we

catch IOException and throw NoSuchElementException in
the next method.

• Catch exceptions as near to the source of failure as makes
sense
– i.e., where you have the information to deal with the exception

• Catch exceptions with as much precision as you can
 BAD: try {…} catch (Exception e) {…}

BETTER: try {…} catch (IOException e) {…}

java.io

Viewing sequential data as a stream

I/O Streams
• The stream abstraction represents a communication channel

with the outside world.
– can be used to read or write a potentially unbounded number of data

items (unlike a list)
– data items are read from or written to a stream one at a time

• The Java I/O library uses subtyping to provide a unified view
of disparate data sources and sinks.

Low-level Streams
• At the lowest level, a stream is a sequence of binary numbers

• The simplest IO classes break up the sequence into 8-bit
chunks, called bytes. Each byte corresponds to an integer in
the range 0 – 255.

11000101001011101011011010101010100101…..

197 46 182 170

InputStream and OutputStream
• Abstract classes that provide basic operations for the Stream class hierarchy:

• These operations read and write int values that represent bytes
range 0-255 represents a byte value
-1 represents “no more data” (when returned from read)

• java.io provides many subclasses for various sources/sinks of data:
files, audio devices, strings, byte arrays, serialized objects

• Subclasses also provides rich functionality:
encoding, buffering, formatting, filtering

int read (); // Reads the next byte of data
void write (int b); // Writes the byte b to the output

Binary IO example
InputStream fin = new FileInputStream(filename);

int[][] data = new int[width][height];
for (int i=0; i < data.length; i++) {
 for (int j=0; j < data[0].length; j++) {
 int ch = fin.read();
 if (ch == -1) {
 fin.close();
 throw new IOException("File ended early");
 }
 data[j][i] = ch;
 }
}
fin.close();

BufferedInputStream
• Reading one byte at a time can be slow!
• Each time a stream is read there is a fixed overhead, plus time

proportional to the number of bytes read.*
– disk -> operating system -> JVM -> program

disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program

• A BufferedInputStream presents the same interface to
clients, but internally reads many bytes at once into a buffer
(incurring the fixed overhead only once)

 disk -> operating system
 ->>>> JVM -> program
 JVM -> program
 JVM -> program
 JVM -> program

*simplified explanation – the OS, disk, etc., might use caching to speed things up

Rule of thumb times to access data:
 actual for intuition

 CPU: 0.5ns (~ 1 sec)
 RAM: 100 ns (~ 1.6 minutes)
 SSD: 150,000 ns (~ 2.75 days)

Buffering Example
FileInputStream fin1 = new FileInputStream(filename);
InputStream fin = new BufferedInputStream(fin1);

int[][] data = new int[width][height];
for (int i=0; i < data.length; i++) {
 for (int j=0; j < data[0].length; j++) {
 int ch = fin.read();
 if (ch == -1) {
 fin.close();
 throw new IOException("File ended early");
 }
 data[j][i] = ch;
 }
}
fin.close();

The Standard Java Streams
java.lang.System provides an InputStream and two standard
PrintStream objects for doing console I/O.

System.in

System.err

System.out

Note that System.in, for example, is a static member of the class System – this means that the field “in” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.

PrintStream Methods

• Note the use of overloading: there are multiple methods called println
– The compiler figures out which one you mean based on the number of arguments,

and/or the static type of the argument you pass in at the method’s call site.
– The java I/O library uses overloading of constructors pervasively to make it easy to “glue

together” the right stream processing routines

void println(boolean b); // write b followed by a new line
void println(String s); // write s followed by a newline
void println(); // write a newline to the stream

void print(String s); // write s without terminating the line
 (output may not appear until the stream is flushed)
void flush(); // actually output characters waiting to be sent

PrintStream adds buffering and binary-conversion
methods to OutputStream

Character based IO
A character stream is a sequence of 16-bit binary numbers

The character-based IO classes break up the sequence into 16-bit
chunks, of type char. Each character corresponds to a letter
(specified by a character encoding).

0000010010100011011011010101010100101…..

\u0251 \uB6AA

593 46,762

‘a’

Reader and Writer
• Similar to the InputStream and OutputStream classes, including:

• These operations read and write int values that represent unicode characters
– read returns an integer in the range 0 to 65535 (i.e., 16 bits)
– value -1 represents “no more data” (when returned from read)
– requires an “encoding” (e.g., UTF-8 or UTF-16, set by a Locale)

• Like byte streams, the library provides many subclasses of Reader and Writer
Subclasses also provides rich functionality.
– use these for portable text I/O

• Gotcha: System.in, System.out, System.err are byte streams
– So, wrap in an InputStreamReader / PrintWriter if you need unicode console I/O

int read (); // Reads the next character
void write (int b); // Writes the char to the output

Design Example: Histogram.java

A design exercise using java.io and the
generic collection libraries

(SEE COURSE NOTES FOR THE FULL STORY)

Problem Statement
Write a program that, given a filename for a text file as input,
calculates the frequencies (i.e., number of occurrences) of each
distinct word of the file. The program should then print the
frequency distribution to the console as a sequence of “word:
freq” pairs (one per line).

Histogram result:
The : 1
Write : 1
a : 4
as : 2
calculates : 1
command : 1
console : 1
distinct : 1
distribution : 1
e : 1

each : 1
file : 2
filename : 1
for : 1
freq : 1
frequencies : 1
frequency : 1
given : 1
i : 1
input : 1

line : 2
number : 1
occurrences : 1
of : 4
one : 1
pairs : 1
per : 1
print : 1
program : 2
sequence : 1

should : 1
text : 1
that : 1
the : 4
then : 1
to : 1
word : 2

Decompose the problem
• Sub-problems:

1. How do we iterate through the text file, identifying all of
the words?

2. Once we can produce a stream of words, how do we
calculate their frequency?

3. Once we have calculated the frequencies, how do we
print out the result?

• What is the interface between these components?
• Can we test them individually?

How to produce a stream of words?
1. How do we iterate through the text file, identifying all of the

words?

• Key idea: Define a class (WordScanner) that implements this
interface by reading words from a text file.

public interface Iterator<T> {
 // returns true if the iteration has more elements
 public boolean hasNext();
 // returns the next element in the iteration
 public T next();
 // Optional: removes last element returned
 public void remove();
}

Coding: Histogram.java

WordScanner.java
Histogram.java

Iterator – hasNext() – First Attempt?

@Override
public boolean hasNext() {
 boolean value = true;
 try {
 int c = r.read();
 if (c == -1) {
 value = false;
 }
 } catch (IOException io) {
 System.out.println("IO Exception happened");
 }
 return value;
}

public class WordScanner implements Iterator<String> {
 private Reader r;
 private int c = -1;
 // ...
}

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1. r is not null
2. r is null if and only if there is no next word

A. c is 0 if there is no next word and nonzero otherwise
B. c is -1 if there is no next word and contains the first

character of the next word otherwise

ANSWER: 1 & B

