
Programming Languages
and Techniques

(CIS1200)

Lecture 33

Swing I: Drawing and Event Handling
Chapter 29

Announcements (1)
• Midterm 2
– Grades and solutions will be posted by Friday

• HW08: TwitterBot*
– Due on November 26th

– Practice with I/O and Collections

2* Maybe should be called "XBot" or "TheProjectFormerlyKnownAsTwitterBot"or ”AnywhereButTwitterBot” or…?

HW9: Game project
• Game Design Proposal Milestone Due: (8 points)

Tomorrow at Midnight = 11:59PM!
– (Should take about 1 hour)
– Submit on GRADESCOPE
– TAs will give you feedback soon

• Final Game Due: (92 points)
 Monday, December 9th at 11:59pm
– Submit zipfile online, submission only checks if your code compiles
– IntelliJ is strongly recommended for this project
– You may distribute your game (after the deadline) if you do not use any of our code

• Grade based on demo with your TA during/after reading days
– Grading rubric on the assignment website
– Recommendation: don’t be too ambitious.

• NO LATE SUBMISSIONS CAN BE ACCEPTED
3

HW9: Game Project

4

Announcements (3)
• Plans for the week of Thanksgiving
– HW08 due on Tuesday at 11.59pm
– No recitations that week
– TA OH till Tuesday will be virtual
– No OH from Wednesday to Sunday

– Wednesday, November 27th – Bonus Lecture
• Material is not needed for HW or Exams
• Should be fun!
• (Will be recorded)

– No lecture on Friday

Announcements (4)
• TA applications are still open
– CIS 1100, 1200, 1600, 1210 (see
https://tinyurl.com/2tn2t22f)

– Other CIS and NETS classes (see
https://www.cis.upenn.edu/ta-information/)

– Accepting applications until
Friday, November 22nd

– Intro CIS TA Panel
• Recording should be available

https://tinyurl.com/2tn2t22f
https://www.cis.upenn.edu/ta-information/

Swing

Java's GUI library

Why study GUIs (again)?
• Most common example of event-

based programming
• Heavy (and effective) use of OO

inheritance
• Case study in library organization

– and some advanced Java features

• Ideas applicable everywhere:
– Web apps
– Mobile apps
– Desktop apps

• Fun?

9

Terminology overview

GUI Library (OCaml) Swing (Java)

Graphics Context Gctx.gctx Graphics, Graphics2D

Widget type Widget.widget JComponent

Basic Widgets button
label
checkbox

JButton
JLabel
JCheckBox

Container Widgets hpair, vpair JPanel, Layouts

Events event ActionEvent
MouseEvent
KeyEvent

Event Listener mouse_listener
mouseclick_listener
(any function of type event -> unit)

ActionListener
MouseListener
KeyListener

10

Swing practicalities
• Java library for GUI development
– javax.swing.*

• Built on older library: AWT
– java.awt.*
– When there are two versions of something, use Swing’s.

(e.g., javax.swing.JButton instead of java.awt.Button)
• The “JFoo” version is usually the one you want, not plain “Foo”

• Portable
– Communicates with underlying OS's native window system
– Same Java program looks appropriately different when run

in the browser and on PC, Linux, Mac, etc.

11

Simple Drawing

DrawingCanvas.java
DrawingCanvasMain.java

Fractal Drawing Demo

13

How do we draw a picture?
• In the OCaml GUI HW, we created widgets whose repaint

function used the graphics context to draw an image

let w_draw : widget =
{
 repaint = (fun (gc:gctx) ->
 fractal (with_color gc green)
 200 450 270 80) ;

 size = (fun () -> (200,200));

 handle = (fun () -> ())
}

• In Swing, the preferred idiom is to extend the JComponent class …

O
Cam

l

14

Fundamental Swing Class: JComponent
• Analog of widget type from OCaml GUI project
• Subclasses should override methods of JComponent

– paintComponent (like repaint: displays the component)
– getPreferredSize (like size: calculates the size of the component)

• Events are handled by listeners
– no need for overriding here

• Rich functionality
– minimum/maximum size
– font
– foreground/background color
– borders
– visibility
– much more…

15

Step 1: Recursive function for drawing

private static void fractal(Graphics gc, int x, int y,
double angle, double len) {

 if (len > 1) {
 double af = (angle * Math.PI) / 180.0;

int nx = x + (int)(len * Math.cos(af));
 int ny = y + (int)(len * Math.sin(af));

gc.drawLine(x, y, nx, ny);
fractal(gc, nx, ny, angle + 20, len - 8);
fractal(gc, nx, ny, angle - 10, len - 8);

}
}

16
How do we turn this into a GUI component?

Step 2: Simple Drawing Component

public class DrawingCanvas extends JComponent {
 // paint the drawing panel on the screen
 public void paintComponent (Graphics gc) {
 super.paintComponent(gc);

 // set the pen color
 gc.setColor(Color.GREEN);
 ((Graphics2d)gc).setStroke(new BasicStroke(3));

 // draw a fractal tree
 fractal(gc, 200, 450, 270, 80);
 }

 // give the size of the drawing panel
 public Dimension getPreferredSize() {
 return new Dimension(200,200);
 }
} How do we put this component on the screen?

17

Step 3: JFrame
• Represents a top-level window

– Displayed directly by OS (looks different on Mac, PC, etc.)

• Contains JComponents
• Can be moved, resized, iconified, closed
public void run() {
 JFrame frame = new JFrame("Tree");

 // set the content of the window to be our drawing
 frame.getContentPane().add(new DrawingCanvas());

 // make sure the application exits when the frame closes
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // resize the frame based on the size of the panel
 frame.pack();

 // show the frame
 frame.setVisible(true);
} 18

(Plus a bit of boilerplate to
call run from main…)

Swing User Interaction

Start Simple: Light Switch
Task: Program an application that displays a button. When the
button is pressed, it toggles a “lightbulb” on and off.

 Key idea: use a ButtonListener to toggle the state of the
lightbulb

20

OnOffDemo

The Lightbulb GUI program in Swing.

Display the Lightbulb
class LightBulb extends JComponent {
 private boolean isOn = false;

 public void flip() {
 isOn = !isOn;
 }

 public void paintComponent(Graphics gc) {
 if (isOn) {
 gc.setColor(Color.YELLOW);
 } else {
 gc.setColor(Color.BLACK);
 }
 gc.fillRect(0, 0, 100, 100);
 }

 public Dimension getPreferredSize() {
 return new Dimension(100,100);
 }
}

Draw the
Light bulb here
using the graphics
context

Set the size of the
window

Remember the private
state of the lightbulb

22

Main Class
public class OnOff implements Runnable {
 public void run() {
 JFrame frame = new JFrame("On/Off Switch");
 JPanel panel = new JPanel();
 frame.getContentPane().add(panel);
 LightBulb bulb = new LightBulb();
 panel.add(bulb);
 JButton button = new JButton("On/Off");
 panel.add(button);
 button.addActionListener(new ButtonListener(bulb));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
 public static void main(String[] args) {
 SwingUtilities.invokeLater(new OnOff());
 }
}

Open frame and
make a panel

Create bulb and
button

Start the (Swing)
application

23

Making the Button Do Something

class ButtonListener implements ActionListener {
 private LightBulb bulb;
 public ButtonListener (LightBulb b) {
 bulb = b;
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 bulb.flip();
 bulb.repaint();
 }
}

Note that “repaint” does not
necessarily do any repainting right now!
It is simply a notification to Swing that
something needs repainting. (This is a
difference from our OCaml GUI library.)
But it is required.

24

An Awkward Comparison

class ButtonListener implements ActionListener {
 private LightBulb bulb;
 public ButtonListener (LightBulb b) {

bulb = b;
}
@Override
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
}

// somewhere in run …
LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");
button.addActionListener(new ButtonListener(bulb));

let bulb, bulb_flip = make_bulb ()
let onoff,_, bnc = button "On/Off"
;; bnc.add_event_listener (mouseclick_listener bulb_flip)

Java
O

Cam
l

25

Too much “boilerplate”!
• ButtonListener really only needs to do bulb.flip() and repaint
• But we need all this extra boilerplate code to build the class
• Often we will instantiate a given Listener class in a GUI exactly

one time

class ButtonListener implements ActionListener {
 private LightBulb bulb;
 public ButtonListener (LightBulb b) {

bulb = b;
}

 @Override
 public void actionPerformed(ActionEvent e) {
 bulb.flip();
 bulb.repaint();
 }
}

26

This is a job for…

Inner Classes

Inner Classes
• Useful in situations where objects require “deep access” to

each other’s internals

• Replace tangled workarounds like the “owner object” pattern
– Solution with inner classes is easier to read
– No need to allow public access to instance variables of outer class

• Also called “dynamic nested classes”

29

class Outer {
 private int outerVar;
 public Outer () {
 outerVar = 6;
 }
 public class Inner {
 private int innerVar;
 public Inner(int z) {

innerVar = z;
 }
 public int getSum() {
 return outerVar + innerVar;
 }
 }
}

Basic Example
Key idea: Classes can be members of other classes…

Inner class can refer to a
to field bound in the
outer class

The name of this class (i.e.,
the static type of objects that
this class creates) is
Outer.Inner

Inner classes can have
their own fields and
methods.

30

Constructing Inner Class Objects
Based on your understanding of the Java
object model, which of the following make
sense as ways to construct an object of an
inner class type?

1. Outer.Inner obj =
new Outer.Inner(2);

2. Outer.Inner obj =
(new Outer()).new Inner(2);

3. Outer.Inner obj =
new Inner(2);

4. Outer.Inner obj =
Outer.Inner.new(2);

Answer: 2 – the inner class instances can refer to non-static fields of the
outer class (even in the constructor), so the invocation of "new" must
be relative to an existing instance of the Outer class.

class Outer {
 private int outerVar;
 public Outer () {
 outerVar = 6;
 }
 public class Inner {
 private int innerVar;
 public Inner(int z) {
 innerVar = z;
 }
 public int getSum() {
 return outerVar +
 innerVar;
 }
 }
}

32

Object Creation
• Inner classes can refer to the instance variables and methods of the

outer class
• Inner class instances usually created by the methods/constructors

of the outer class
 public Outer () {
 Inner b = new Inner ();
 }

• Inner class instances cannot be created independently of a
containing class instance
 Outer.Inner b = new Outer.Inner()

 Outer a = new Outer();
 Outer.Inner b = a.new Inner();

 Outer.Inner b = (new Outer()).new Inner();

I.e., this.new

33

Anonymous Inner Classes

• Define a class and create an object from it all at once, inside a
method

final LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
});

35

Anonymous Inner Classes

line.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 shapes.add(new Line(…));
 canvas.repaint();
 }
});

Can access fields and
methods of outer class, as
well as final local variables

quit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 }); Puts button action with

button definition

36

Anonymous Inner Classes
• New expression form: define a class and create an object

from it all at once

new InterfaceOrClassName() {
 public void method1(int x) {
 // code for method1
 }
 public void method2(char y) {
 // code for method2
 }
}

Static type of the expression
is the Interface/superclass
used to create it

Dynamic class of the created
object is anonymous!
Can't refer to it.

Normal class
definition,
no constructors
allowed

New keyword

37

Like first-class functions…
• Anonymous inner classes are a Java equivalent of OCaml’s

first-class functions
• Both create "delayed computations" that can be stored in a

data structure and run later
– Code stored by the event / action listener
– Code only runs when the button is pressed
– Could run once, many times, or not at all

• Both sorts of computation can refer to variables in the current
scope
– OCaml: Any available variable
– Java: only variables marked final

38

Lambdas are Anonymous Inner Classes
• Often implementation of anonymous classes is simple

– e.g., an interface that contains only one method

• Lambda* expressions
– treat functionality as method argument, or code as data
– Java's version of first-class functions

• Pass functionality as an argument to another method,
– e.g., what action should be taken when someone clicks a button.

• Any interface that has exactly one method can be
implemented via a "lambda" (anonymous function).
– method "name" implicitly determined by the type at which the

lambda is used
– https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressio

ns.html

*The term "lambda" comes from the lambda calculus, which was introduced by Alonzo Church in the 1930s. The
lambda calculus forms the theoretical basis of all functional programming languages. 39

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Lambda Expressions

• Java includes lambda expressions which can implement classes
that define only a single method

• Any interface with exactly one method is a functional interface
• Syntax: x -> { body } // type of x inferred

 (T x) -> { body } // arg x has type T
 (T x, W y) -> { body } // multiple arguments

final LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");

button.addActionListener((ActionEvent e) -> {
 bulb.flip();

bulb.repaint();
 });

40

Java Lambda In A Nutshell

x -> x + x

(x,y) -> x.m(y)

(x,y) -> {
 System.out.println(x);
 System.out.println(y);
}

int method1(int x) {
 return x + x;
}

int method2(A x, B y) {
 return x.m(y);
}

void method3(String x,
 String y) {
 System.out.println(x);
 System.out.println(y);
}

Lambda Notation "Ordinary" Java Notation

Method names and types
are inferred from the context.

41

