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Announcements (1)
• Midterm 2

– Grades and solutions available
– Regrade requests via Gradescope

• Opens later today
• Due by Friday, December 6th

• HW08: TwitterBot*
– Due tomorrow
– Practice with I/O and Collections

• HW9: Game Project
– TAs will give you feedback soon
– Final Program Due: Monday, December 9th at 11:59pm
– Grade based on demo with your TA during/after reading days
– NO LATE SUBMISSIONS PERMITTED

2* Maybe should be called "XBot"  or  "TheProjectFormerlyKnownAsTwitterBot"or  ”AnywhereButTwitterBot” or…?



Announcements (2)
• Plans for the week of Thanksgiving
– HW08 due on Tuesday at 11.59pm
– No recitations this week
– TA OH till Tuesday will be virtual
– No OH from Wednesday to Sunday

– Wednesday, November 27th – Bonus Lecture
• Come to either lecture (10:15 or noon)
• Material is not needed for HW or Exams
• Should be fun!
• (Will be recorded)

– No lecture on Friday



Swing Layout Demo

LayoutDemo.java
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Mushroom of Doom

How do we put Swing components together to 
make a complete game?

11



12



GameCourt,
subclass of 
JPanel
(court)

JPanel
(status_panel)

JPanel
(control_panel) JButton

(reset)

JLabel (status)
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Game State
Circle

pos_x 170

pos_y 170

v_x 2

v_y 3

…

GameCourt

snitch

poison

square

playing true

…

Poison

pos_x 130

pos_y 130

v_x 0

v_y 0

…

Square

pos_x 0

pos_y 0

v_x 0

v_y 0

…
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How can we share code 
between the game 
objects, but show them 
differently? 
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Abstract Classes
• An abstract class provides an incomplete implementation:

– some methods are marked as abstract
– those methods must be overridden to create instances

public abstract class AbstractClass {
 private int x = 0;
 public int m() {
  return frob(frob(x));
 }

abstract int frob(int x);
}

class ConcreteClass extends AbstractClass {
 @Override
 int frob(int x) {
  return x * 120;
 } 
}

Keyword "abstract" marks
methods without implementations.

A subclass overrides the abstract
method with an implementation.





True or False:  It is possible to fill in the hole marked __??__ so that, when 
run, the variable ac will contain a new object of type  AbstractClass.

public abstract class AbstractClass {
 private int x = 0;
 public int m() {
  return frob(frob(x));
 }
 abstract int frob(int x);
}

// somewhere in main:
AbstractClass ac = new __??__;

Answer: True – use an anonymous inner class!

public abstract class AbstractClass {
 private int x = 0;
 public int m() {
  return frob(frob(x));
 }
 abstract int frob(int x);
}

// somewhere in main:
AbstractClass ac = new AbstractClass () {
 @Override
 int frob(int x) { return 0; }
}; 



Updating the Game State: timer
void tick() { 
  if (playing) {
    square.move();
    snitch.move();
 snitch.bounce(snitch.hitWall());      // bounce off walls...
 snitch.bounce(snitch.hitObj(poison)); // ...and the mushroom

 if (square.intersects(poison)) {
    playing = false;
    status.setText("You lose!");
 } else if (square.intersects(snitch)) {
    playing = false;
    status.setText("You win!");
 }

repaint();
}

}
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How does the user 
interact with the game?

1. Clicking Reset button restarts the game
2. Holding arrow key makes square move
3. Releasing key makes square stop
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Adapters

MouseAdapter
KeyAdapter
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Two interfaces for mouse listeners
interface MouseListener extends EventListener {
 public void mouseClicked(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e); 
 public void mousePressed(MouseEvent e); 
 public void mouseReleased(MouseEvent e);
}

interface MouseMotionListener extends EventListener {
 public void mouseDragged(MouseEvent e);
 
 public void mouseMoved(MouseEvent e);
}
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Lots of boilerplate
• There are seven methods in the two interfaces.
• We only want to do something interesting for three of them.
• Need "trivial" implementations of the other four to implement 

the interface…

• Solution: MouseAdapter class…

public void mouseMoved(MouseEvent e)   { }
  public void mouseClicked(MouseEvent e) { }   
  public void mouseEntered(MouseEvent e) { }
  public void mouseExited(MouseEvent e)  { }
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Adapter classes
• Swing provides a collection of abstract event adapter classes
• These adapter classes implement listener interfaces with 

empty, do-nothing methods 
• To implement a listener class, we extend an adapter class and 

override just the methods we need
• Another example: MouseListener and MouseMotionListener

– Seven methods in two separate interfaces
– Suppose we only need to override three of them 

private class MyMouseListener extends MouseAdapter {
 public void mousePressed(MouseEvent e) { … }
 public void mouseReleased(MouseEvent e) { … }
 public void mouseDragged(MouseEvent e) { … }
}
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KeyListener interface
interface KeyListener extends EventListener {

 public void keyPressed(KeyEvent e)
 // Invoked when a key has been pressed.

 public void keyReleased(KeyEvent e)
 // Invoked when a key has been released.

 public void keyTyped(KeyEvent e)
 // Invoked when a key has been typed.
}
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KeyAdapter class
class KeyAdapter implements KeyListener {

 public void keyPressed(KeyEvent e) { return; } 
 // Invoked when a key has been pressed.

 public void keyReleased(KeyEvent e) { return; } 
 // Invoked when a key has been released.

 public void keyTyped(KeyEvent e) { return; } 
 // Invoked when a key has been typed.
}
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Using the Keyboard
• The "Focus" determines which JComponent is notified when a 

keyboard event occurs 

• During set up
 setFocusable(true);   // Enable key events
 addKeyListener(…);    // Register reactions to events

• Once the component is visible
 // Make sure that this component has the keyboard focus
 requestFocusInWindow();



Updating the Game State: keyboard
setFocusable(true);
addKeyListener(new KeyListener() {
  public void keyPressed(KeyEvent e) {
 if (e.getKeyCode() == KeyEvent.VK_LEFT)
 square.v_x = -SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_RIGHT)
 square.v_x = SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_DOWN)
 square.v_y = SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_UP)
 square.v_y = -SQUARE_VELOCITY;
 }

 public void keyReleased(KeyEvent e) {
square.v_x = 0;
square.v_y = 0;

}

public void keyTyped(KeyEvent e) { }
});

Make square's 
velocity nonzero 

when a key is pressed

Make square's 
velocity zero when a 

key is released
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Updating the Game State: keyboard
setFocusable(true);
addKeyListener(new KeyAdapter() {
  public void keyPressed(KeyEvent e) {
 if (e.getKeyCode() == KeyEvent.VK_LEFT)
 square.v_x = -SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_RIGHT)
 square.v_x = SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_DOWN)
 square.v_y = SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_UP)
 square.v_y = -SQUARE_VELOCITY;
 }

 public void keyReleased(KeyEvent e) {
square.v_x = 0;
square.v_y = 0;

}
});

Make square's 
velocity nonzero 

when a key is pressed

Make square's 
velocity zero when a 

key is released
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