
Programming Languages
and Techniques

(CIS1200)

Lecture 35

Swing III: Layout and MoD
Chapter 31

Announcements (1)
• Midterm 2

– Grades and solutions available
– Regrade requests via Gradescope

• Opens later today
• Due by Friday, December 6th

• HW08: TwitterBot*
– Due tomorrow
– Practice with I/O and Collections

• HW9: Game Project
– TAs will give you feedback soon
– Final Program Due: Monday, December 9th at 11:59pm
– Grade based on demo with your TA during/after reading days
– NO LATE SUBMISSIONS PERMITTED

2* Maybe should be called "XBot" or "TheProjectFormerlyKnownAsTwitterBot"or ”AnywhereButTwitterBot” or…?

Announcements (2)
• Plans for the week of Thanksgiving
– HW08 due on Tuesday at 11.59pm
– No recitations this week
– TA OH till Tuesday will be virtual
– No OH from Wednesday to Sunday

– Wednesday, November 27th – Bonus Lecture
• Come to either lecture (10:15 or noon)
• Material is not needed for HW or Exams
• Should be fun!
• (Will be recorded)

– No lecture on Friday

Swing Layout Demo

LayoutDemo.java

10

Mushroom of Doom

How do we put Swing components together to
make a complete game?

11

12

GameCourt,
subclass of
JPanel
(court)

JPanel
(status_panel)

JPanel
(control_panel) JButton

(reset)

JLabel (status)

13

Game State
Circle

pos_x 170

pos_y 170

v_x 2

v_y 3

…

GameCourt

snitch

poison

square

playing true

…

Poison

pos_x 130

pos_y 130

v_x 0

v_y 0

…

Square

pos_x 0

pos_y 0

v_x 0

v_y 0

…

14

How can we share code
between the game
objects, but show them
differently?

15

Abstract Classes
• An abstract class provides an incomplete implementation:

– some methods are marked as abstract
– those methods must be overridden to create instances

public abstract class AbstractClass {
 private int x = 0;
 public int m() {
 return frob(frob(x));
 }

abstract int frob(int x);
}

class ConcreteClass extends AbstractClass {
 @Override
 int frob(int x) {
 return x * 120;
 }
}

Keyword "abstract" marks
methods without implementations.

A subclass overrides the abstract
method with an implementation.

True or False: It is possible to fill in the hole marked __??__ so that, when
run, the variable ac will contain a new object of type AbstractClass.

public abstract class AbstractClass {
 private int x = 0;
 public int m() {
 return frob(frob(x));
 }
 abstract int frob(int x);
}

// somewhere in main:
AbstractClass ac = new __??__;

Answer: True – use an anonymous inner class!

public abstract class AbstractClass {
 private int x = 0;
 public int m() {
 return frob(frob(x));
 }
 abstract int frob(int x);
}

// somewhere in main:
AbstractClass ac = new AbstractClass () {
 @Override
 int frob(int x) { return 0; }
};

Updating the Game State: timer
void tick() {
 if (playing) {
 square.move();
 snitch.move();
 snitch.bounce(snitch.hitWall()); // bounce off walls...
 snitch.bounce(snitch.hitObj(poison)); // ...and the mushroom

 if (square.intersects(poison)) {
 playing = false;
 status.setText("You lose!");
 } else if (square.intersects(snitch)) {
 playing = false;
 status.setText("You win!");
 }

repaint();
}

}
19

How does the user
interact with the game?

1. Clicking Reset button restarts the game
2. Holding arrow key makes square move
3. Releasing key makes square stop

20

Adapters

MouseAdapter
KeyAdapter

22

Two interfaces for mouse listeners
interface MouseListener extends EventListener {
 public void mouseClicked(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
}

interface MouseMotionListener extends EventListener {
 public void mouseDragged(MouseEvent e);

 public void mouseMoved(MouseEvent e);
}

23

Lots of boilerplate
• There are seven methods in the two interfaces.
• We only want to do something interesting for three of them.
• Need "trivial" implementations of the other four to implement

the interface…

• Solution: MouseAdapter class…

public void mouseMoved(MouseEvent e) { }
 public void mouseClicked(MouseEvent e) { }
 public void mouseEntered(MouseEvent e) { }
 public void mouseExited(MouseEvent e) { }

24

Adapter classes
• Swing provides a collection of abstract event adapter classes
• These adapter classes implement listener interfaces with

empty, do-nothing methods
• To implement a listener class, we extend an adapter class and

override just the methods we need
• Another example: MouseListener and MouseMotionListener

– Seven methods in two separate interfaces
– Suppose we only need to override three of them

private class MyMouseListener extends MouseAdapter {
 public void mousePressed(MouseEvent e) { … }
 public void mouseReleased(MouseEvent e) { … }
 public void mouseDragged(MouseEvent e) { … }
}

25

KeyListener interface
interface KeyListener extends EventListener {

 public void keyPressed(KeyEvent e)
 // Invoked when a key has been pressed.

 public void keyReleased(KeyEvent e)
 // Invoked when a key has been released.

 public void keyTyped(KeyEvent e)
 // Invoked when a key has been typed.
}

26

KeyAdapter class
class KeyAdapter implements KeyListener {

 public void keyPressed(KeyEvent e) { return; }
 // Invoked when a key has been pressed.

 public void keyReleased(KeyEvent e) { return; }
 // Invoked when a key has been released.

 public void keyTyped(KeyEvent e) { return; }
 // Invoked when a key has been typed.
}

27

Using the Keyboard
• The "Focus" determines which JComponent is notified when a

keyboard event occurs

• During set up
 setFocusable(true); // Enable key events
 addKeyListener(…); // Register reactions to events

• Once the component is visible
 // Make sure that this component has the keyboard focus
 requestFocusInWindow();

Updating the Game State: keyboard
setFocusable(true);
addKeyListener(new KeyListener() {
 public void keyPressed(KeyEvent e) {
 if (e.getKeyCode() == KeyEvent.VK_LEFT)
 square.v_x = -SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_RIGHT)
 square.v_x = SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_DOWN)
 square.v_y = SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_UP)
 square.v_y = -SQUARE_VELOCITY;
 }

 public void keyReleased(KeyEvent e) {
square.v_x = 0;
square.v_y = 0;

}

public void keyTyped(KeyEvent e) { }
});

Make square's
velocity nonzero

when a key is pressed

Make square's
velocity zero when a

key is released

29

do nothing

Updating the Game State: keyboard
setFocusable(true);
addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e) {
 if (e.getKeyCode() == KeyEvent.VK_LEFT)
 square.v_x = -SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_RIGHT)
 square.v_x = SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_DOWN)
 square.v_y = SQUARE_VELOCITY;
 else if (e.getKeyCode() == KeyEvent.VK_UP)
 square.v_y = -SQUARE_VELOCITY;
 }

 public void keyReleased(KeyEvent e) {
square.v_x = 0;
square.v_y = 0;

}
});

Make square's
velocity nonzero

when a key is pressed

Make square's
velocity zero when a

key is released

30

