
Programming Languages
and Techniques

(CIS1200)

Lecture 36

Swing IV: Adapters, Paint revisited, Design Patterns
Advanced Java

Chapter 31

Announcements
• Final Program Due: (92 points)

 Monday, December 9th at 11:59pm
– Submit zipfile online, submission only checks if your code compiles
– IntelliJ is strongly recommended for this project
– You may distribute your game (after the deadline) if you do not use

any of our code

• Grade based on demo with your TA during/after
reading days
– Grading rubric on the assignment website
– Recommendation: don’t be too ambitious.

• NO LATE SUBMISSIONS PERMITTED

2

CIS 1200 Final Exam
• Tuesday, December 17th 12:00-2:00 PM

– Meyerson Hall B1 Last Names A – M
– Fagin Auditorium Last Names N – Z

• Students who need accommodations should schedule
their exams (ASAP) through the Weingarten Center

• Review Session / Mock exam
– 2 hour mock exam followed by 2 hour review
– (The review session will be recorded)
– Location and Time – TBA
– Look for details on Ed

Exam Preparation
• Comprehensive exam covering the entire course:
– Ideas from OCaml material (but no need to write OCaml)
– All Java material

(emphasizing material since midterm 2)
– All course content

• except: Bonus Lecture (Code is Data) and
 Guest Lecture (Jane Street)

• Only simple/shallow questions about Wednesday’s lecture

• Closed book, but…
– You may use one letter-sized, two-sided, handwritten

sheet of notes during the exam.

We're almost done
• Today: Swing IV: Adapters, Paint revisited, Design Patterns
• Wednesday: Advanced Java Topics
• Friday: Semester Recap

• Monday: OCaml at Jane Street

Mushroom of Doom

How do we put Swing components together to
make a complete game?

8

9

Adapters

MouseAdapter
KeyAdapter

10

Two interfaces for mouse listeners
interface MouseListener extends EventListener {
 public void mouseClicked(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);

public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);

}

interface MouseMotionListener extends EventListener {
public void mouseDragged(MouseEvent e);

 public void mouseMoved(MouseEvent e);
}

11

Lots of boilerplate
• There are seven methods in the two interfaces.
• We only want to do something interesting for three of them.
• Need "trivial" implementations of the other four to implement

the interface…

• Solution: MouseAdapter class…

public void mouseMoved(MouseEvent e) { return; }
 public void mouseClicked(MouseEvent e) { return; }
 public void mouseEntered(MouseEvent e) { return; }
 public void mouseExited(MouseEvent e) { return; }

12

Adapter classes:
• Swing provides a collection of abstract event adapter classes
• These adapter classes implement listener interfaces with

empty, do-nothing methods
• To implement a listener class, we extend an adapter class and

override just the methods we need

private class Mouse extends MouseAdapter {
 public void mousePressed(MouseEvent e) { … }
 public void mouseReleased(MouseEvent e) { … }
 public void mouseDragged(MouseEvent e) { … }
}

13

Paint Demo

(PaintA.java … PaintE.java)

15

Paint Revisited

Using Anonymous Inner Classes
Refactoring for OO Design

16

What layout would you use for
this app? What components
would you use?

17

Canvas
subclass of
JPanel
(canvas)

JPanel
(toolbar)

JRadioButton
(point, line)

JCheckbox
(thick)

JButton
(quit)

18

Mouse Interaction in Paint

Point
Mode

LineStart
Mode

LineEnd
Mode

Line
Button
press

Point
Button
press

Mouse Released
[add new line,
set preview to null]

Mouse Pressed
[store point,
set preview shape]

Mouse Released (in the canvas)
[add new point]

Mouse Dragged
[update preview]

19

Advanced Java Miscellany

The slides touch on
these. Lecture will
cover only some parts...

• Design Patterns (MVC)
• Java Streams (and lambdas)
• Threads & Synchronization
• Garbage Collection
• Hashing: HashSets & HashMaps
• Packages
• JVM (Java Virtual Machine) and compiler details:

– class loaders, security managers, just-in-time compilation
• Advanced Generics

– Bounded Polymorphism: type parameters with ‘extends’ constraints
class C<A extends Runnable> { … }

– Type Erasure
– Interaction between generics and arrays

• Reflection
– The Class class

Advanced Java

For all the beautiful details:
Java Language Specification
http://docs.oracle.com/javase/specs/

Design Patterns
• Design Patterns

– Influential OO design book published in
1994 (so a bit dated)

– Identifies many common situations
and "patterns" for implementing
them in OO languages

• Some we have seen explicitly:
– e.g. Iterator pattern

• Some we've used but not explicitly described:
– e.g. The parts of the Chat HW uses the Factory pattern

• Some are workarounds for OO's lack of some features:
– e.g. The Visitor pattern is like OCaml's fold + pattern matching

Model View Controller
Design Pattern

Model-View-Controller Design Pattern

Model
Business Logic

View(s)

User

Controller

Manipulates

Presented by

UsesSees

Example 1: Mushroom of Doom

Example: MOD Program Structure
• GameCourt, GameObj + subclass local state

– object location & velocity
– status of the game (playing, win, loss)
– how the objects interact with eachother (tick)

• Draw methods
– paintComponent in GameCourt
– draw methods in GameObj subclasses
– status label

• Game / GameCourt
– Reset button (updates model)
– Keyboard control (updates square velocity)

Model

View

Controller

Example: Paint Program Structure
• Main frame for application (class Paint)

– List of shapes to draw
– The current color
– The current line thickness

• Drawing panel (class Canvas, inner class of Paint)

• Control panel (class JPanel)
– Contains radio buttons for selecting shape to draw
– Line thickness checkbox, undo and quit buttons

• Connections between Preview shape (if any…)
– Preview Shape: View <-> Controller
– MouseAdapter: Controller <-> Model

Model

View

Controller

Example: CheckBox

Model

Selected?
Pressed?

Views Controllers

Class JToggleButton.ToggleButtonModel

true or false

boolean isSelected() Checks if the button is selected.
void setPressed(boolean b) Sets the pressed state of the button.
void setSelected(boolean b) Sets the selected state of the button.

setSelected

mouseListener

keyListener

Example: Chat Server

Model

owners: Map<Channel,
 Users>

users: Map<Channel,

Set<Users>>
…

Views Controllers

ServerModel

createChannel
joinChannel
invite
kick
…

getChannels
getUsers
getOwner
…

Internal
Representation

Example: Web Pages

Model

Views

Controllers

document.
addEventListener()

Internal
Representation:

DOM
(Document

Object Model)

JavaScript
API

MVC Pattern

Model

View(s)

User

Controller

Manipulates

Updates

UsesSees

MVC Benefits?
• Decouples "model state" from how that state is presented

and manipulated
– Suggests how to decompose the design to make it more flexible

• Multiple views
– e.g. from different angles, or for multiple different users

• Multiple controllers
– e.g. mouse vs. keyboard interaction

• Key benefit: Makes the model testable independent of the
GUI

MVC Variations
• Many variations on MVC pattern

• Hierarchical / Nested
– As in the Swing libraries, in which JComponents often have a "model"

and a "controller" part

• Coupling between Model / View or View / Controller
– e.g. in MOD the Model and the View are coupled because the model

carries most of the information about the view

Functional Programming + Streams

(See Streams.java)

I/O Streams
• The stream abstraction represents a communication channel

with the outside world.
– can be used to read or write a potentially unbounded number of data

items (unlike a list)
– data items are read from or written to a stream one at a time

• The Java I/O library uses subtyping to provide a unified view
of disparate data sources and sinks.

Streams redux
• Use streams of elements to support functional-style

operations on collections
• Key differences between streams and collections:

– No storage (i.e., not a data structure)
– Functional in nature (i.e., do not modify the source)
– Possibly unbounded (i.e., computations on infinite streams can

complete in finite time)
– Consumable (i.e., similar to Iterator)
– Lazy-seeking

• “Find the first input String that begins with a vowel” doesn’t need
to look at all Strings from the input

Creating Streams (1)
• From a Collection via

the stream() and parallelStream() methods
• From an array via Arrays.stream()

• The lines of a file can be obtained
from BufferedReader.lines()

• Streams of random numbers can be obtained
from Random.ints();

• Numerous other stream-bearing methods in the JDK

Creating Streams (2)
• Can create your own Low-Level Stream
• Similar to having a custom class like WordScanner that

implements Iterator

• Spliterator – parallel analogue to Iterator
– (Possibly infinite) Collection of elements
– Support for:

• Sequentially advancing elements (similar to next())
• Bulk Traversal (performs the given action for each remaining

element, sequentially in the current thread)
• Splitting off some portion of the input into another spliterator,

which can be processed in parallel (much easier than doing
threads manually!)

Stream Pipeline Operations
• Intermediate (Stream-producing) operations

– E.g., filter, map, sorted
– Similar to transform in Ocaml
– Return a new stream
– Always lazy (produce elements as needed, not ahead of time)
– Traversal of the source does not begin until the terminal

operation of the pipeline is executed
• Terminal (value- or side-effect-producing) operations

– E.g. forEach, reduce, findFirst, allMatch, max, min
– Similar to fold in Ocaml
– Produce a result or side-effect

• Combined to create Stream pipelines

Lambdas, Streams, Pipelines
The Beauty and Joy of functional programming, now in Java!

roster.stream()
.filter(p ->

p.getHomeSchool().equals("SEAS")
&& p.getAge() >= 18
&& p.getAge() <= 25)

.map(p -> p.getEmailAddress())

.forEach(email -> System.out.println(email));

int sum = widgets.stream()
.filter(b -> b.getColor() == RED)
.mapToInt(b -> b.getWeight())
.sum();

Functional Programming + Parallelism

(See Streams.java)

Functional Programming + Parallelism
• Parallelism by design in Java 1.8

– Streams are functional in nature (i.e., do not modify the source)
– Spliterator

• Much easier than doing it manually
– No need for synchronized
– No need for locks
– Don’t have to worry about race conditions!

• Use parallelStream() (instead of stream())!
– Java will automatically create the necessary threads and scale

based on your computer’s hardware

Sample Problem
• Given a list of numbers, find the sum of the squares of the

numbers

• Iterative Approach

• Works, more likely to have bugs (off-by-one), harder to
parallelize

int sum = 0;
for (int i = 0; i < list.size(); i++) {

int x = list.get(i);
sum += x * x;

}

Sample Problem
• Given a list of numbers, find the sum of the squares of the

numbers

• Functional Approach
• Use transform and fold (aka map and reduce in Java)

• Less likely to have bugs, much easier to parallelize

list.parallelStream()
.map(x -> x * x)
.reduce(0, Integer::sum);

