Programming Languages
and Techniques
(C1S1200)

Lecture 38

Semester Recap

Announcements

* Final Program Due: (92 points)
Monday, December 9t at 11:59pm

— Submit zipfile online, submission only checks if your code compiles
— Intelli) is strongly recommended for this project

— You may distribute your game (after the deadline) if you do not use
any of our code

* Grade based on demo with your TA during/after
reading days
— Grading rubric on the assignment website
— Recommendation: don’t be too ambitious.

* NO LATE SUBMISSIONS

CIS 1200 Final Exam

* Tuesday, December 17t 12:00-2:00 PM

— Meyerson Hall B1 Last Names A— M
— Fagin Auditorium Last Names N -7

e Students who need accommodations should schedule
their exams (ASAP) through the Weingarten Center

* Review Session / Mock exam
— 2 hour mock exam followed by 2 hour review
— (The review session will be recorded)
— Location and Time — TBA
— Look for details on Ed

Exam Preparation

 Comprehensive exam covering the entire course:

— Ideas from OCaml material (but no need to write OCaml)
— All Java material

* emphasizing material since midterm 2: subtyping, dynamic
dispatch, collections, equality & overriding, exceptions, /0,
inner classes, swing

— All course content

* except: Bonus Lecture (Code is Data) and
Guest Lecture (Jane Street)

* Only simple/shallow questions about Wednesday’s lecture

* Closed book, but...

— You may use one letter-sized, two-sided, handwritten
sheet of notes during the exam.

Monday’s Guest Lecture

Designing OCaml to be predictably faster at Jane Street

Speaker: Richard Eisenberg, Jane Street

Abstract: Jane Street uses OCaml programs to power millions of
market transactions daily. These programs must be fast, and also
their performance must be consistent. The way polymorphism is
designed in OCaml makes predictable high performance hard to
achieve. This talk will explain why this is so, and how we plan to
fix it by extending the language and compiler. Along the way,
we'll see how careful study of programming languages vyields
tangible results in a practical setting. The talk will conclude with
information about how OCaml is used at Jane Street and some of
the exciting opportunities there.

From Day 1

(IS 1200 is a course in program design

* Practical skills:
— ability to write larger (~1000 lines)

programs

— increased independence
("working without a recipe")

TEUurn following may 9|emenbsbeg|n need

|Ibrarg ava reference operations ynit

implements o e programming

== funcbion "

QM Gime many Displaceable size baCk else

Promise: A challenging
but rewarding course.

— test-driven development, principled

debugging

 Conceptual foundations:
— common data structures and algorithms

— several different programming idioms

— focus on modularity and compositionality

— derived from first principles throughout

e |t will be fun!

m:d objects QAT

mOuseJ) heap . bl fl@ldq IOO Node

e Point

"N expressnon ubllc Ue\f;lﬁ local
ezegb;g "5""’"9' workspace nexb variable

~class
read
figure funcbions

rec sum

G a) point el G
renvalue b?g::
~Brogtamie

result

first = Figure R OC -y Ipnvabe None

callusing p,(,v.desf.,eballalso
match
?ﬁlns'b Iengbh
H Note g field bree input
ex:gn?b Ilkeml ht Gui
Empty head write

bool MUS ;¢ erenbp art ‘”hebhe’ metihOdS
implement b able bypes
graphics use drawn"g

“m

Which assign

ment was the most challenging?

0

OCaml finger exercises

DNA

Sets an

Queues

GUI

Images

Chat

d Maps

TwitterBot

Game

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

0%

0%

0%

“m

Which assign

ment was the most rewarding?

0

OCaml finger exercises

DNA

Sets an

Queues

GUI

Images

Chat

d Maps

TwitterBot

Game

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

0%

0%

0%

13 concepts in 36 lectures

Concept: Design Recipe

Understand the problem

What are the relevant concepts and how do they relate?
Formalize the interface

How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs? On unusual
ones? On erroneous ones?

Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

HOW TO SOLVE IT

G. POLYA

"Solving problems", wrote Polya, "is a practical art, like
swimming, or skiing, or playing the piano: You can learn it
only by imitation and practice."

Interface vs. Implementation

 Concept: Type abstraction hides the actual
implementation of a data structure, describes a
data structure by its interface (what it does vs.
how it is represented), supports reasoning with
invariants

 Examples: Set/Map interface (HW3), queues in
: . concrete representation
ﬁvar/ants are a crucial tool for \de access oo E--. -----
. abstract view
reasoning about data structures:

1. Establish the invariants when @
you create th-e strgcture. entation without
2. Preserve the invariants when
you modify the structure. bout the @
3. Protect the structure from

\\ external modification.

Testing

 Concept: Write tests before coding
— "test first”" methodology

* Examples: R A
. . . X e,
— Simple assertions for declarative X "
programs (or subprograms) /Q'P P
_ | : %
Longer (and more) tests for statefu TDD circle X3
programs / subprograms of life &

— Informal tests for GUIs

(can be automated through tools) ‘ '

 Why? Refackor

— Tests clarify the specification of the problem

— Helps you understand the invariants

— Thinking about tests informs the implementation

— Tests help with extending and refactoring code later
— Industry practice; useful for coordinating teams

Functional/Procedural Abstraction
Concept: Don't Repeat Yourself! R)
— Generalize code so it can be reused @ m m
in multiple situations iE ﬁ- 5

e P D

Examples: Functions/methods,
generics, higher-order functions, N { 8 - Petanse

interfaces, subtyping, abstract classes
inner classes

— e~

Pablo Picasso, Bull (plates | - XI) 1945

Why?
— Duplicated functionality = duplicated bugs
— Duplicated functionality = more bugs waiting to happen
— Good abstractions make code easier to read, modify, maintain

Persistent data structures

Concept: Store data in persi

ste B
implement computations as ﬁ;cursion is the natural way of \
P P computing a function f(?) when ¢

structures belongs to an inductive data type:

Examples: immutable lists ar the base case(s).
images, Strings, StreamsinJg 2. Compute ffor larger cases by

Why?

1. Determine the value of ffor

combining the results of
recursively calling fon smaller
cases.

Same idea as mathematical
induction (a la CIS 1600) /

etween various parts of the program, all interfaces

Simple model of co

Simple interfac
communicatj
are explici

Recursion amenable to mathematical analysis (CIS 1600/1210)

Plays well with concurrency

Concept: Tree Structured data

Lists (i.e., “unary” trees)
Simple binary trees

Trees with invariants: e.g., binar
search trees

let rec length (l:int list) : int =
begin match 1 with

| [1 -> 0

:tl -> 1 + length(tl)

er

Widget trees: screen layout + event

routing
Swing components

Trees are ubiquitous in

computer science!
— file system organization
— languages, compilers
— domain name hierarchy www.google.com

Why?

— organized data leads to
divide and conquer algorithms
that are more efficient

lots
and lots
of time

Apes
|

Greater Apes

Lesser Apes
|

'
= ,\ '
orangutan

white-cheeked gibbon

User clicks,
generating
evente
7

’—;L-'
[Be110]| [wil1a

2

border

=
space

4 o
label borden | .handle e

label J .handle e

http://www.google.com

First-class computation

* Concept: code is a form of data that can be defined by
functions, methods, or objects (including anonymous ones),
stored in data structures, and passed to other functions

 Examples: map, filter, fold (HW4), pixel transformers (HW®6),
event listeners (HWS5, 7, 9)

cell.addMouselistener(e ->
selectCell(cell));

e Why?
— Powerful tool for abstraction: can factor out design patterns that differ
only in certain computations

Types, Generics, and Subtyping

* Concept: Static type systems can detect many errors early.
Every expression has a static type, and OCaml/Java use the
types to rule out buggy programs. Generics and subtyping
make types more flexible and allow for better code reuse.

let rec contains (x:’a) (1:’a list) : bool =
begin match 1 with
| [] -> false
| h::tl -> x = a || (contains x tl)
end

* Why?
— Lets the language enforce (programmer-defined) abstraction

— Easier to fix problems indicated by a type error than to write a test
case and then figure out why the test case fails

— Promotes refactoring: type checking ensures that basic invariants
about the program are maintained

Mutable data

Concept: Some data structures are ephemeral: computations
mutate them over time

Examples: queues, deques (HW4), GUI state (HWS5, 9),
arrays (HW 6), iterators (HW8)

Why?

— Common in OO0 programming, which simulates the transformations that
objects undergo when interacting with their environment

— Heavily used for event-based programming, where different parts of the
application communicate via shared state

— Default style for Java libraries (collections, etc.)

head || ¥ || T v 1] 1 v 2

tail || « | next || * i 4 next |[™J

A queue with two elements

Abstract types: Sequences, Sets, Maps

Concept: Specific collection types: sequences, sets, and finite
maps

Examples: HW3, Java Collections, HW 7, 8
Why?
— These abstract data types come up again and again

— Need aggregate data structures (collections) no matter what language
you are programming in

— Need to be able to choose the data structure with the right semantics
r 3 r 3 7 N
A A []

) A =) B =)
| filter A transform - fold

. J (map) y) (reduce)

O JON -

Lists, Trees, BSTs, Queues, and Arrays

 Concept: There are implementation trade-offs for abstract types
 Examples:

— Binary Search Trees vs. (linked) Lists vs. Hashing for sets and maps
— Linked lists vs. Arrays for sequential data

e Why?
— Abstract types have multiple implementations

— Different implementations have different trade-offs. Need to understand
these trade-offs to use them well.

— For example: BSTs use their invariants to speed up lookup operations

compared to linked lists.
interface Set {boolean isEmpty(); ...}

[Eif/"\?j\ v |1 (F v | 2

 head

| tail [;;] next d}next Ef;;ﬂ

A queue with two elements

Abstract Stack Machine

 Concept: The Abstract Stack Machine is a detailed model of
how programs execute in OCaml/Java

Do the Function call Save Workspace; push 11, 12 Lookup 11 Lookup I1

Match Expression Nil case Doesn’t Match Cors case Does Match Simplify the Branch: push h, t

Looxup " Lookup " Lookup ‘sppend” Lookup ‘sppend’

Abstract Stack Machine

Concept: The Abstract Stack Machine is a detailed model of
how programs execute in OCaml/Java

Example: Many, throughout the semester!

Why?
— To know what your program does without running it

— To understand tricky features of Java/OCaml language
(aliasing, first-class functions, exceptions, dynamic dispatch)

— To help understand the programming models of other languages:
Javascript, Python, C++, CH, ...

— To help predict performance and space usage
— To implement a compiler or interpreter

Event-Driven programming

Concept: Structure a program by associating "handlers" that
react to events. Handlers typically interact with the rest of the
program by modifying shared state.

Examples: GUI programming in OCaml and Java

ece X! 0camigraphics
— Practice with reasoning about B 1%[A
shared state . \-
— Practice with first-class functions 1 |
— Basis for programming with 3k AR } v,
Swing —

@Pmntl IO Lme] IO Elllpsel IO Textl Ig Thick lmes]

— Common in GUI applications = =D GELLELEC Tweew |
Text buFFer:m

Why some other language than Java?

* Level playing field for students with varying backgrounds
coming into the same class

* Two points of comparison — OCaml and Java — allows us to
emphasize language-independent concepts

* Learn concepts that generalize across diverse languages.

* "OCaml-style" type systems have influenced many modern
language designs

...but why specifically OCaml?

Rich, orthogonal vocabulary

In Java: int, A[], Object, Interfaces
In OCaml:

— primitives

— arrays

— objects

— datatypes (including lists, trees, and options)
— records

— refs

— first-class functions

— abstract types

All of the above can be implemented in

Java, but untangling various use cases of
objects is subtle

Concepts like generics can be studied in
isolation in OCaml, with fewer intricate
interactions with the rest of the language

Functional Programming

In Java, every reference is mutable and
optional by default

In OCaml, persistent data structures are the
default. Furthermore, the type system keeps
track of what is and is not mutable, and what
is and is not optional

Advantages of immutable/persistent data
structures

— Don't have to keep track of aliasing. Interface to the
data structure is simpler

— Often easier to think in terms of "transforming" data
structures than "modifying" data structures

— Simpler implementation
(compare lists and trees to queues and deques)

— Simple but powerful evaluation model
(substitution + recursion)

WHY DO YOU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET YOU?

TAIL RECURSION 15
IT5 OWN REWARD.

P&

ONEDOES NOT SIMPL

MOVATE A DATASTRUCTURE

Object Oriented Programming

» A different way of decomposing / structuring

programs ((

* Basic principles: = 3
. P
— Encapsulation of local, mutable state < —

— Inheritance to share code
— Dynamic dispatch to select which code gets run Java

— Subtyping to capture statically known information about
inheritance and the "is a" relationship

* but why specifically Java?

Important Ecosystem i

KEEP

. . CALM
Canonical example of OO language design AND
LEARN JAVA
Widely used: Desktop / Server / Android / etc.
Industrial strength tools - e S"“”“E«Ra”ko e
Python 100.0
- Inteni.l / ECIipse n Java ® 0 0 96.3
— JUnit testing framework H- 0w e R
] n on 00 @ | e
— Profilers, debuggers, ... o — ..
Libraries: B 5 =
- -]] c# ®@ 00 ® 745
— Collections / 1/0 libraries/ Swing o —

In-demand job skill

— |EEE Spectrum: 2
— TIOBE: 3™

What Next?

Classes:

CIS 1210, 2620, 3200 — data structures, performance, computational
complexity

CIS 19xx — programming languages

e C++, Python, Haskell, Ruby on Rails, iPhone programming, Android,
Javascript, Rust, Go

CIS 2400 — lower-level: hardware, gates, assembly, C programming
CIS 4710, 4480 — hardware and OS’s

CIS 5520 — advanced functional programming in Haskell

CIS 5521 — compilers (projects in OCaml)

Penn
Engineering

And many more!

The Craft of Programming

The Pragmatic Programmer: Prasmatic

From Journeyman to Master Prograi

v

by Andrew Hunt and David Thomas

— Not about a particular programming language,
it covers style, effective use of tools, and
good practices for developing programs

>

Andrew Hunt
David Thomas

Joshua Bloch ... W .
* Effective Java

Effective Java by Joshua Bloch

Third Edition

— Technical advice and wisdom about using Java for
building software. The views we have espoused in
this course share much of the same design
philosophy

Universal Principles
of Design

Universal Principles of Design
by William Lidwell, Kritina Holden, Jill Butler

— General principles about good design with examples
and applications ranging across software and user
interfaces, to physical objects, to traditional
graphic design.

Functional Programming

’ Real World Ocaml O‘REILLY'
by Yaron Minsky, Anil Madhavpeddy, Y

and Jason Hickey {\
— Using OCaml in practice: learn how to leverage “‘ |
its rich types, module system, libraries, and Real World

tools to build reliable, efficient software. OCaml
— https://realworldocaml.org/ |

* Explore related Languages:

DI\ Haskel ’Scala FAsoN

KKotIin O Clojure <> F# Swift

https://realworldocaml.org/

Conferences / Videos / Blogs

Many blogs / tutorials about Java
curry-on.org

cufp.org Commercial Users of Functional
Programming

— See e.g. Manuel Chakravarty's talk
"A Type is Worth a Thousand Tests"

Jane Street Tech Blog
— OCaml in practice
— "Building better software" podcast

Join us! Penn's PL Club plclub.org

Ways to get Involved

Become a TA!

< [wics)

Undergraduate
Research

Parting Thoughts

Help us improve CIS 1200!
— End-of-term survey will be sent soon
— Penn Course evaluations also provide useful feedback
— We take them seriously: please give us your thoughts!

r = = ™
|£ | Image Processing " | == d&]

RotateCW

RotateCCW

Mirror vertical

Mirror horizontal

Simple transform

Contrast

Reduce palette

Blur

Flood

Thanks to you!

let rec length (lL:int list) : int = ece X/ OCaml graphics
begin match 1 with
I [>
| _::t1 -> 1 + length(tl) o 0
end

AAAA
ACAT | AAGA Hey, kids

#foo I I

GCAT TCGT TAGA GAGA

-

800 Join

What channel do you want to join? What channel do you want to join?
’: 2 #bar = #baz
Cancel oK n =—— a OEllipse| [O Text| [Thick lines - -

. E0EEEOD® Current Color.
000 2 |

Load new image Save image Quit Lide
[]

Alice 4 ‘ RotateCW ‘

Join Leave i R —
‘ RotateCCW «

‘ Border

o..

) W

LR Bes
S

Simple transform .
d A

‘ Color scale

‘ Contrast
‘ Reduce palette

‘ alpha-Blend ‘

‘ Vignette ’

Custom

