Programming Languages and Techniques (CIS120)

Lecture 6
September 12, 2018

Binary Search Trees
(Lecture notes Chapter 7)
Announcements

• Homework 2: Computing Human Evolution
 – due Tuesday, September 18th

• Reading: Chapter 7

• Please Complete the Entry Survey
 – See the link on Piazza
Recap: Binary Trees

trees with (at most) two branches
A binary tree is either empty, or a node with at most two children, both of which are also binary trees.

A leaf is a node whose children are both empty.
type tree =
| Empty
| Node of tree * int * tree

let t : tree =
Node (Node (Empty, 1, Empty),
 3,
 Node (Empty, 2,
 Node (Empty, 4, Empty)))
More Tree Coding

examples: size
Trees as Containers
Trees as Containers

- Like lists, binary trees aggregate data
- As we did for lists, we can write a function to determine whether the data structure contains a particular element

```ml
type tree =
| Empty
| Node of tree * int * tree
```
Searching for Data in a Tree

```ml
let rec contains (t:tree) (n:int) : bool =
  begin match t with
  | Empty    -> false
  | Node(lt,x,rt) -> x = n
      && (contains lt n) && (contains rt n)
  end
```

- This function searches through the tree, looking for n.
- In the worst case, it might have to traverse the entire tree.
Search during (contains t 8)
New: Recursive Tree Traversals

Pre-Order
Root – Left – Right

In Order
Left – Root – Right

Post-Order
Left – Right – Root

(* Pre-Order Traversal: *)
let rec f (t:tree) : ... =
 begin match t with
 | Empty -> ...
 | Node(l, x, r) ->
 let root = ... x ... in (* process root *)
 let left = f l in (* recursively process left *)
 let right = f r in (* recursively process right *)
 combine root left right
 end

Different traversals vary the order in which these are computed...
In what sequence will the nodes of this tree be visited by a post-order traversal?

Post-Order
Left – Right – Root

- [0;1;6;2;7;8]
- [0;1;2;6;7;8]
- [2;1;0;7;6;8]
- [7;8;6;2;1;0]
- [2;1;7;8;6;0]
In what sequence will the nodes of this tree be visited by a post-order traversal?

1. [0;1;6;2;7;8]
2. [0;1;2;6;7;8]
3. [2;1;0;7;6;8]
4. [7;8;6;2;1;0]
5. [2;1;7;8;6;0]

Answer: 5
What is the result of applying this function on this tree?

```
let rec inorder (t:tree) : int list =
    begin match t with
    | Empty -> []
    | Node (left, x, right) ->
        inorder left @ (x :: inorder right)
    end
```

Options:

- `[]`
- `[1;2;3;4;5;6;7]`
- `[1;2;3;4;5;7;6]`
- `[4;2;1;3;5;6;7]`
- `[4]`
- `[1;1;1;1;1;1;1]`
- `none of the above`
What is the result of applying this function on this tree?

1. []
2. [1;2;3;4;5;6;7]
3. [1;2;3;4;5;7;6]
4. [4;2;1;3;5;6;7]
5. [4]
6. [1;1;1;1;1;1;1]
7. none of the above

Answer: 3
let rec contains (t:tree) (n:int) : bool = begin match t with
| Empty -> false
| Node(lt,x,rt) -> x = n || (contains lt n) || (contains rt n)
end

contains (Node(Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty)),
 5, Node (Empty, 7, Empty))) 7

5 = 7
|| contains (Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty))) 7
|| contains (Node (Empty, 7, Empty)) 7

(1 = 7 || contains (Node (Empty, 0, Empty)) 7
 || contains (Node(Empty, 3, Empty)) 7)
|| contains (Node (Empty, 7, Empty)) 7

((0 = 7 || contains Empty 7 || contains Empty 7)
 || contains (Node(Empty, 3, Empty)) 7)
|| contains (Node (Empty, 7, Empty)) 7

contains (Node(Empty, 3, Empty)) 7
|| contains (Node (Empty, 7, Empty)) 7

contains (Node (Empty, 7, Empty)) 7
Ordered Trees

Big idea: find things faster by searching less
Key Insight:

Ordered data can be searched more quickly

- This is why telephone books are arranged alphabetically
- But requires the ability to focus on (roughly) *half* of the current data
Binary Search Trees

- A binary search tree (BST) is a binary tree with some additional invariants*:

 - Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are $< x$
 - all nodes of rt are $> x$

 - Empty is a BST

- The BST invariant means that container functions can take time proportional to the height instead of the size of the tree.

*An data structure invariant is a set of constraints about the way that the data is organized. “types” (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.
An Example Binary Search Tree

Node (lt, x, rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

Empty is a BST

Note that the BST invariants hold for this tree.
Search in a BST: \((\text{lookup \ t \ 8})\)
Searching a BST

(* Assumes that t is a BST *)

\[
\text{let rec \(\text{lookup} \ (t:\text{tree}) \ (n:\text{int}) : \text{bool} = \)
\begin{align*}
\text{begin} & \text{match } t \text{ with} \\
| \text{Empty} & \rightarrow \text{false} \\
| \text{Node}(\text{lt},x,\text{rt}) & \rightarrow \\
\hspace{1em} & \text{if } x = n \text{ then true} \\
\hspace{1em} & \text{else if } n < x \text{ then } \text{lookup } \text{lt} \ n \\
\hspace{1em} & \text{else } \text{lookup } \text{rt} \ n \\
\text{end}
\end{align*}
\]

• The BST invariants guide the search.

• Note that lookup may return an incorrect answer if the input is \textit{not} a BST!
 – This function \textit{assumes} that the BST invariants hold of \(t \).
Node(lt, x, rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x
Empty is a BST

Is this a BST??
1. yes
2. no

Answer: no, 7 to the left of 6
Node \((lt, x, rt)\) is a BST if
- \(lt\) and \(rt\) are both BSTs
- all nodes of \(lt\) are \(< x\)
- all nodes of \(rt\) are \(> x\)
• Empty is a BST

Is this a BST??
1. yes
2. no

Answer: Yes
Node(\(lt, x, rt\)) is a BST if
- \(lt\) and \(rt\) are both BSTs
- all nodes of \(lt\) are \(< x\)
- all nodes of \(rt\) are \(> x\)

Empty is a BST

Is this a BST??
1. yes
2. no

Answer: no, 5 to the left of 4
Node(\(lt, x, rt\)) is a BST if
- \(lt\) and \(rt\) are both BSTs
- all nodes of \(lt\) are \(< x\)
- all nodes of \(rt\) are \(> x\)

Empty is a BST

Is this a BST??
1. yes
2. no

Answer: no, 4 to the right of 4
• Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
• Empty is a BST

Is this a BST??
1. yes
2. no

Answer: yes
Node\((lt, x, rt)\) is a BST if
- \(lt\) and \(rt\) are both BSTs
- all nodes of \(lt\) are \(< x\)
- all nodes of \(rt\) are \(> x\)
Empty is a BST

Is this a BST??
1. yes
2. no

Answer: yes
Manipulating BSTs

Inserting an element

insert : tree -> int -> tree
Inserting into a BST

- Suppose we have a BST t and a new element n, and we wish to compute a new BST t' containing all the elements of t together with n
 - Need to make sure the tree we build is really a BST – i.e., make sure to put n in the right place!

- This gives us a way to build up a BST containing any set of elements we like:
 - Starting from the Empty BST, apply this function repeatedly to get the BST we want
 - If insertion preserves the BST invariants, then any tree we get from it will be a BST by construction
 - No need to check!
 - Later: we can also “rebalance” the tree to make lookup efficient (NOT in CIS 120; see CIS 121)

First step: find the right place...
Inserting a new node: (insert t 4)
Inserting a new node: \((\text{insert } t 4)\)
Inserting Into a BST

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
 | Empty -> Node(Empty,n,Empty)
 | Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
end

• Note the similarity to searching the tree.
• Assuming that t is a BST, the result is also a BST. (Why?)
• Note that the result is a new tree with (possibly) one more Node; the original tree is unchanged

Critical point!