Programming Languages and Techniques (CIS120)

Lecture 6
January 30, 2019

Binary Search Trees
(Lecture notes Chapter 7)
Announcements

• Homework 2: Computing Human Evolution
 – due Tuesday, February 5th

• Reading: Chapter 7

• Please Complete the Entry Survey
 – See the link on Piazza
Recap: Binary Trees

trees with (at most) two branches
A binary tree is either *empty*, or a *node* with at most two children, both of which are also binary trees.

A *leaf* is a node whose children are both empty.
Binary Trees in OCaml

```
type tree =  
  | Empty  
  | Node of tree * int * tree

let t : tree =  
  Node (Node (Empty, 1, Empty),  
  3,  
  Node (Empty, 2,  
  Node (Empty, 4, Empty))))  
```
More Tree Coding

examples: size
Trees as Containers
Trees as Containers

• Like lists, binary trees aggregate data
• As we did for lists, we can write a function to determine whether the data structure contains a particular element

```plaintext
type tree =
| Empty
| Node of tree * int * tree
```
Searching for Data in a Tree

let rec contains (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt,x,rt) -> x = n
 || (contains lt n) || (contains rt n)
 end

• This function searches through the tree, looking for n
• In the worst case, it might have to traverse the *entire* tree
Search during \((\text{contains } t 8)\)
New: Recursive Tree Traversals

Pre-Order
Root – Left – Right

In Order
Left – Root – Right

Post-Order
Left – Right – Root

(* Pre-Order Traversal: *)
let rec f (t:tree) : ... =
begin
match t with
| Empty -> ...
| Node(l, x, r) ->
 let root = ... x ... in (* process root *)
 let left = f l in (* recursively process left *)
 let right = f r in (* recursively process right *)
 combine root left right
end

Different traversals vary the order in which these are computed...
In what sequence will the nodes of this tree be visited by a post-order traversal?

Post-Order
Left – Right – Root

[0;1;6;2;7;8]
[0;1;2;6;7;8]
[2;1;0;7;6;8]
[7;8;6;2;1;0]
[2;1;7;8;6;0]
In what sequence will the nodes of this tree be visited by a post-order traversal?

1. [0;1;6;2;7;8]
2. [0;1;2;6;7;8]
3. [2;1;0;7;6;8]
4. [7;8;6;2;1;0]
5. [2;1;7;8;6;0]

Answer: 5
What is the result of applying this function on this tree?

```
let rec inorder (t:tree) : int list =
  begin match t with
    | Empty   -> []
    | Node (left, x, right) ->
      inorder left @ (x :: inorder right)
  end
```

- None of the above
- [4]
- [4;2;1;3;5;6;7]
- [1;2;3;4;5;6;7]
- [1;2;3;4;5;7;6]
What is the result of applying this function on this tree?

1. []
2. [1;2;3;4;5;6;7]
3. [1;2;3;4;5;7;6]
4. [4;2;1;3;5;6;7]
5. [4]
6. [1;1;1;1;1;1;1]
7. none of the above

Answer: 3
let rec contains (t:tree) (n:int) : bool =
begin
match t with
| Empty -> false
| Node(lt,x,rt) -> x = n || (contains lt n) || (contains rt n)
end

contains (Node(Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty)), 5, Node (Empty, 7, Empty))) 7

5 = 7
|| contains (Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty))) 7
|| contains (Node (Empty, 7, Empty)) 7

(1 = 7 || contains (Node (Empty, 0, Empty)) 7
 || contains (Node(Empty, 3, Empty)) 7)
|| contains (Node (Empty, 7, Empty)) 7

((0 = 7 || contains Empty 7 || contains Empty 7)
 || contains (Node(Empty, 3, Empty)) 7)
|| contains (Node (Empty, 7, Empty)) 7

contains (Node(Empty, 3, Empty)) 7
|| contains (Node (Empty, 7, Empty)) 7
contains (Node (Empty, 7, Empty)) 7
Ordered Trees

Big idea: find things faster by searching less
Key Insight:

Ordered data can be searched more quickly

– This is why telephone books are arranged alphabetically
– But requires the ability to focus on (roughly) half of the current data
Binary Search Trees

• A binary search tree (BST) is a binary tree with some additional invariants*:

 - Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x

 • Empty is a BST

• The BST invariant means that container functions can take time proportional to the **height** instead of the **size** of the tree.

*An data structure invariant is a set of constraints about the way that the data is organized. “types” (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.
Note that the BST invariants hold for this tree.

• Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
• Empty is a BST
Search in a BST: (lookup t 8)
Searching a BST

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
 begin
 match t with
 | Empty -> false
 | Node(lt,x,rt) ->
 if x = n then true
 else if n < x then lookup lt n
 else lookup rt n
 end

• The BST invariants guide the search.
• Note that lookup may return an incorrect answer if the input is not a BST!
 – This function assumes that the BST invariants hold of t.
Node(lt, x, rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

Empty is a BST

Is this a BST??
1. yes
2. no

Answer: no, 7 to the left of 6
• Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
• Empty is a BST

Is this a BST??
1. yes
2. no

Answer: Yes
Is this a BST??
1. yes
2. no

• Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
• Empty is a BST

Answer: no, 5 to the left of 4
Is this a BST??

1. yes
2. no

Node(lt, x, rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

Empty is a BST

Answer: no, 4 to the right of 4
Node(lt, x, rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

Empty is a BST

Is this a BST??
1. yes
2. no

Answer: yes
Node(lt, x, rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

Empty is a BST

Is this a BST??
1. yes
2. no

Answer: yes
Manipulating BSTs

Inserting an element

insert : tree -> int -> tree
Inserting into a BST

• Suppose we have a BST t and a new element n, and we wish to compute a new BST t' containing all the elements of t together with n
 – Need to make sure the tree we build is really a BST – i.e., make sure to put n in the right place!

• This gives us a way to build up a BST containing any set of elements we like:
 – Starting from the Empty BST, apply this function repeatedly to get the BST we want
 – If insertion preserves the BST invariants, then any tree we get from it will be a BST by construction
 • No need to check!
 – Later: we can also “rebalance” the tree to make lookup efficient (NOT in CIS 120; see CIS 121)

First step: find the right place...
Inserting a new node: (insert t 4)
Inserting a new node: (insert t 4)
Inserting Into a BST

(* Insert n into the BST t *)

let rec insert (t:tree) (n:int) : tree =
begin match t with
 | Empty -> Node(Empty,n,Empty)
 | Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
end

• Note the similarity to searching the tree.
• Assuming that t is a BST, the result is also a BST. (Why?)
• Note that the result is a new tree with (possibly) one more Node; the original tree is unchanged