Graph Representations

Let $G = (V, E)$ with $|V| = n$, $|E| = m$. In other words, for some graph G, it contains n vertices and m edges.

Adjacency Matrix

One way to represent G is with an $n \times n$ matrix A where $A[i][j] = 1$ if there is an edge from vertex i to vertex j and 0 otherwise. The primary advantage of this approach is that you can check whether or not there is an edge connecting two vertices in $O(1)$ time. The disadvantage, however, is that this representation takes up $O(n^2)$ space. When n is large, this might become untenable.

Two things worth noting:

- If G is undirected, then its adjacency matrix is symmetric. That is, flipping the matrix along its main diagonal will produce the same matrix.
- Entries along the diagonal of an adjacency matrix (technically representing the presence of edges from vertices to themselves) are 0 by convention, as our graphs are simple. Non-simple graphs have self-loops, where vertices contain edges to themselves (these will not be dealt with in this course).

Adjacency List

Another way to represent G is to use an adjacency list. Each vertex u is associated to a list $\text{neighbors}(v)$ which contains the nodes v such that $(u, v) \in E$. The advantage of this representation is that we use less space, $O(n + m)$, which is better than $O(n^2)$ of adjacency matrices as long as $m \ll n^2$. The disadvantage, though, is that checking whether $(u, v) \in E$ takes (potentially) linear time.

Graph Traversals

We now look at two ways to traverse a graph.

BFS (Breadth First Search)

In BFS, we begin at a node v (level 0) and explore the graph in “layers.” First we would explore all children of v (level 1), then the children of the nodes in level 1 (these would make up level 2), etc. The key point here is that we explore all nodes at level i before exploring any nodes at level $i + 1$. The output of BFS is called a BFS tree. We typically use a queue to implement this algorithm. For implementation details, see https://en.wikipedia.org/wiki/Breadth-first_search.

The running time of BFS is $O(n + m)$, because each vertex is added and removed from the queue once and, in the worst case, we need to traverse every edge to visit each node.

DFS (Depth First Search)

In DFS, we begin at a node v and examine its neighbors. As soon as we encounter a neighbor that hasn’t been visited, visit it. Once we arrive at a node for which all of its neighbors have been visited, we “backtrack” until we reach a node that has still unvisited neighbors (in the form of returning from recursive visit calls). We typically use a stack. There is also a recursive method to implement this algorithm. Please see both implementation methods in the link below.
The running time analysis for DFS is similar to that of BFS, giving a running time of $O(n + m)$.

Dijkstra’s Algorithm

Definition 1 (Greedy algorithm). A greedy algorithm is one which always makes the choice that looks best at the moment—the *locally optimal* choice—in order to find the best *globally optimal* solution. Greedy algorithms do not always yield optimal solutions, but for many problems they do.

Definition 2 (Shortest path). A shortest path from vertex s to vertex t is a directed path from s to t with the property that no other such path has a lower total edge weight.

Overview

Dijkstra’s algorithm finds the shortest path between two given vertices in a weighted graph, assuming that the graph’s edge weights are non-negative. The running time of the algorithm is $O((E + V) \log V)$ when the graph is implemented using adjacency lists. With a special transformation (use of Fibonacci heaps) this can be reduced to $O(E + V \log V)$, which is the fastest version of this algorithm. The pseudo-code for the algorithm is given below.

Pseudocode

```
DIJKSTRA(G, s)
1  for each vertex $v \in V_G$
2      $dist[v] = \infty$
3      $parent[v] = \text{NIL}$
4  $dist[s] = 0$
5  $Q = V_G$
6  while $Q \neq \emptyset$
7      $u = \text{EXTRACT-MIN}(Q)$
8      for each vertex $v \in G.\text{Adj}[u]$
9          if $dist[v] > dist[u] + w(u, v)$
10             $dist[v] = dist[u] + w(u, v)$
11             $parent[v] = u$
```

Runtime

Question: Given this pseudocode, explain the running time of Dijkstra’s algorithm?

The running time of Dijkstra’s algorithm has two components, $E \log V$ and $V \log V$. Let us first consider the $V \log V$ term: this component derives from the maximum size (V) of the heap used to store vertices, and the running time of heap operations such as INSERT and REMOVE-MIN is $O(\log V)$.

The $E \log V$ term has to do with the *relaxation* step of Dijkstra’s algorithm. Each edge examined may result in a relaxation of the neighboring node in the heap; in other words, an update key operation that is $O(\log V)$. We know that the number of vertices examined in line 8 above is bounded by the total degree of all vertices, as each vertex is added and popped exactly once from the min-heap. This value is $2|E|$ by the Handshake lemma, so in the worst case we have $2|E|$ decrease-key operations, for a total of $O(E \log V)$.

This bound is good for easily proving our run-time, but it is not tight. Each edge (u, v) can only cause one relaxation, not two as the handshake lemma suggests. This is because (u, v) is explored only when node u is popped from the min-heap. This means that when (u, v) is explored from node v node u has already been removed, so it’s key cannot be decreased.
Graph Traversal Questions

Problem 1. Design an algorithm to determine whether or not a graph has a cycle.

Problem 2. Design an algorithm to determine whether or not a connected graph has a cycle in \(O(n) \) time.

Problem 3. Design an algorithm to find the shortest path between nodes \(u \) and \(v \) in a connected, unweighted graph.

Dijkstra’s Questions

Problem 4. Find the shortest path between vertices \(E \) and \(G \).

Problem 5. Explain why Dijkstra’s algorithm is a greedy algorithm.

Problem 6. Does Dijkstra’s Algorithm work with negative weights? Why or why not?

Problem 7. True or false: Dijkstra’s algorithm will not terminate if run on a graph with negative edge weights.

Problem 8. True or false: If we double the weights of all the edges in a graph, then Dijkstra’s algorithm will produce the same shortest path.