CIS 121

Introduction to Trees
Tree ADT

- Tree definition
 - A tree is a set of nodes which may be empty
 - If not empty, then there is a distinguished node r, called root and zero or more non-empty subtrees $T_1, T_2, \ldots T_k$, each of whose roots are connected by a directed edge from r.

- This recursive definition leads to recursive tree algorithms and tree properties being proved by induction.

- Every node in a tree is the root of a subtree.
A Generic Tree

- T_1
- T_2
- T_3
- T_4
- T_{10}
Tree Terminology

- **Root** of a subtree is a child of r. r is the **parent**.
- All children of a given node are called **siblings**.
- A **leaf** (or external node) has no children.
- An **internal node** is a node with one or more children.
- A **path** from node V_1 to node V_k is a sequence of nodes s.t. V_i is the parent of V_{i+1} for $1 \leq i \leq k$.
 - If there is a path from V_1 to V_2, then V_1 is an **ancestor** of V_2 and V_2 is a **descendant** of V_1.
More Tree Terminology

- The *length* of this path is the number of edges.
 - The length of the path is one less than the number of nodes on the path (\(k - 1 \) in this example)
- The *depth* (also called *level*) of any node in a tree is the length of the path from root to the node.
- The *height* of a tree is the length of the path from the root to the deepest node in the tree.
 - A tree with only one node (the root) has height 0.
A tree node contains:
- Data Element
- Links to other nodes

Any tree can be represented with the “first-child, next-sibling” implementation.

```java
class TreeNode
{
    AnyType element;
    TreeNode firstChild;
    TreeNode nextSibling;
}
```
Printing a Child/Sibling Tree

// depth equals the number of tabs to indent name
private void listAll(int depth)
{
 printName(depth); // Print the name of the object
 if(isDirectory())
 for each file c in this directory
 (i.e. for each child)
 c.listAll(depth + 1);
}

public void listAll()
{
 listAll(0);
}

- What is the output when listAll() is used for the Unix directory tree?
K-ary Tree

- If we know the maximum number of children each node will have, K, we can use an array of children references in each node.

```java
class KTreeNode {
    AnyType element;
    KTreeNode children[ K ];
}
```
Pseudocode for Printing a K-ary Tree

// depth equals the number of tabs to indent name
private void listAll(int depth)
{
 printElement(depth); // Print the object
 if(children != null)
 for each child c in children array
 c.listAll(depth + 1);
}

public void listAll()
{
 listAll(0);
}
Binary Trees

- A special case of K-ary tree is a tree whose nodes have exactly two child references -- binary trees.

- A *binary tree* is a rooted tree in which no node can have more than two children AND the children are distinguished as *left* and *right*.
private class BinaryNode<AnyType>
{
 // Constructors
 BinaryNode(AnyType theElement)
 {
 this(theElement, null, null);
 }

 BinaryNode(AnyType theElement,
 BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)
 {
 element = theElement; left = lt; right = rt;
 }

 AnyType element; // The data in the node
 BinaryNode<AnyType> left; // Left child reference
 BinaryNode<AnyType> right; // Right child reference
}
Full Binary Tree

A full binary tree is a binary tree in which every node is a leaf or has exactly two children.
FBT Theorem

- Theorem: A FBT with \(n \) internal nodes has \(n + 1 \) leaves (external nodes).

- Proof by strong induction on the number of internal nodes, \(n \):

 - Base case:
 - Binary Tree of one node (the root) has:
 - zero internal nodes
 - one external node (the root)

 - Inductive Assumption:
 - Assume all FBTs with \(n \) internal nodes have \(n + 1 \) external nodes.
FBT Proof (cont’d)

- **Inductive Step** - prove true for a tree with $n + 1$ internal nodes (i.e. a tree with $n + 1$ internal nodes has $(n + 1) + 1 = n + 2$ leaves)
 - Let T be a FBT of n internal nodes.
 - Therefore T has $n + 1$ leaf nodes. (Inductive Assumption)
 - Enlarge T so it has $n+1$ internal nodes by adding two nodes to some leaf. These new nodes are therefore leaf nodes.
 - Number of leaf nodes increases by 2, but the former leaf becomes internal.
 - So,
 - # internal nodes becomes $n + 1$,
 - # leaves becomes $(n + 1) + 2 - 1 = n + 2$
Perfect Binary Tree

- A *Perfect Binary Tree* is a Full Binary Tree in which all leaves have the same depth.
PBT Theorem

- **Theorem:** The number of nodes in a PBT is $2^{h+1} - 1$, where h is height.

- **Proof by strong induction on h, the height of the PBT:**
 - Notice that the number of nodes at each level is 2^l. (Proof of this is a simple induction - left to student as exercise). Recall that the height of the root is 0.
 - **Base Case:**
 The tree has one node; then $h = 0$ and $n = 1$ and $2^{(h + 1)} - 1 = 2^{(0 + 1)} - 1 = 2^1 - 1 = 2 - 1 = 1 = n$.
 - **Inductive Assumption:**
 Assume true for all PBTs with height $h \leq H$.

17
Proof of PBT Theorem (cont)

- Prove true for PBT with height H+1:
 - Consider a PBT with height H + 1. It consists of a root and two subtrees of height <= H. Since the theorem is true for the subtrees (by the inductive assumption since they have height <= H) the PBT with height H+1 has
 - \((2^{(H+1)} - 1)\) nodes for the left subtree
 + \((2^{(H+1)} - 1)\) nodes for the right subtree
 + 1 node for the root
 - Thus, \(n = 2 \times (2^{(H+1)} - 1) + 1\)
 \[= 2^{((H+1)+1)} - 2 + 1 = 2^{((H+1)+1)} - 1\]
A Complete Binary Tree is a binary tree in which every level is completed filled, except possibly the bottom level which is filled from left to right.
Tree Traversals

Depth-First Traversals
- Preorder – root, left subtree, right subtree
- Inorder – left subtree, root, right subtree
- Postorder – left subtree, right subtree, root

Breadth-First Traversal
- Level-order – each level is printed in turn
Tree Traversals

Depth-first
Inorder: A, B, C, D, E, F, G, H, I (left, root, right) ← Notice the sorting!
Postorder: A, C, E, D, B, H, I, G, F (left, right, root)

Breadth-first
Level-order: F, B, G, A, D, I, C, E, H
Is it possible to reconstruct a Binary Tree from just one of its pre-order, inorder, or post-order sequences?
Given two sequences (say pre-order and inorder) is the tree unique?
Finding an element in a Binary Tree?

Return a reference to node containing \(x \), return null if \(x \) is not found

```java
public BinaryNode<AnyType> find(AnyType x) {
    return find(root, x);
}

private BinaryNode<AnyType> find(BinaryNode<AnyType> node, AnyType x) {
    BinaryNode<AnyType> t = null; // in case we don’t find it
    if (node.element.equals(x)) // found it here??
        return node;

    // not here, look in the left subtree
    if (node.left != null)
        t = find(node.left, x);

    // if not in the left subtree, look in the right subtree
    if (t == null && node.right != null)
        t = find(node.right, x);

    // return reference, null if not found
    return t;
}
```
A Binary Tree can have many properties

- Number of leaves
- Number of interior nodes
- Is it a full binary tree?
- Is it a perfect binary tree?
- Height of the tree

Each of these properties can be determined using a recursive function.
Recursive Binary Tree Function

return-type function (BinaryNode<AnyType> t)
{
 // base case - usually empty tree
 if (t == null) return xxxx;

 // determine if the node referred to by t has the property
 // traverse down the tree by recursively “asking” left/right
 // children if their subtree has the property

 return theResult;
}
Is this a full binary tree?

boolean isFBT (BinaryNode<AnyType> t)
{
 // base case - an empty tree is a FBT
 if (t == null) return true;

 // determine if this node is “full”
 // if just one child, return - the tree is not full
 if ((t.left == null && t.right != null)
 || (t.right == null && t.left != null))
 return false;

 // if this node is full, “ask” its subtrees if they are full
 // if both are FBTs, then the entire tree is an FBT
 // if either of the subtrees is not FBT, then the tree is not
 return isFBT(t.right) && isFBT(t.left);
}
Other Recursive Binary Tree Functions

- Count number of interior nodes
  ```c
  int countInteriorNodes( BinaryNode<AnyType> t);
  ```

- Determine the height of a binary tree. By convention (and for ease of coding) the height of an empty tree is -1
  ```c
  int height( BinaryNode<AnyType> t);
  ```

- Many others
Other Binary Tree Operations

- How do we insert a new element into a binary tree?

- How do we remove an element from a binary tree?