Red-Black Trees

Based on materials by Dennis Frey, Yun Peng, Jian Chen, and Daniel Hood
Quick Review of Binary Search Trees

- Given a node n...
 - All elements of n’s left subtree are less than n.data
 - All elements of n’s right subtree are greater than n.data
- We are prohibiting duplicate values
- Insert/Find/Remove are O(height) (why?)
- The tree’s height varies between lg N and N
 - A balanced tree has height lg N
Review of Tree Rotations: Zig-Zig (Node and Parent are Same Side)

Rotate P around G, then X around P
Review of Tree Rotations: Zig-Zag (Node and Parent are Different Sides)

Rotate X around P, then X around G
DEFINITIONS
Red-Black Trees

Definition: A red-black tree is a binary search tree in which:
- Every node is colored either Red or Black.
- Each NULL pointer is considered to be a Black “node”.
- If a node is Red, then both of its children are Black.
- Every path from a node to a NULL contains the same number of Black nodes.
- By convention, the root is Black.

Definition: The black-height of a node X in a red-black tree is the number of Black nodes on any path to a NULL, not counting X.
A Red-Black Tree with NULLs shown

Black-Height of the tree (the root) = 3
Black-Height of node “X” = 2
A Red-Black Tree with
Black-Height = 3
Black Height of the tree?

Black Height of X?
Theorem 1 – Any red-black tree with root x, has $n \geq 2^{bh(x)} - 1$ nodes, where $bh(x)$ is the black height of node x.

Proof: by induction on height of x.
Theorem 2 – In a red-black tree, at least half the nodes on any path from the root to a NULL must be Black.

Proof – If there is a Red node on the path, there must be a corresponding Black node.

Algebraically this theorem means

$$bh(x) \geq h/2$$
Theorem 3 – In a red-black tree, no path from any node, X, to a NULL is more than twice as long as any other path from X to any other NULL.

Proof: By definition, every path from a node to any NULL contains the same number of Black nodes. By Theorem 2, at least \(\frac{1}{2} \) the nodes on any such path are Black. Therefore, there can no more than twice as many nodes on any path from X to a NULL as on any other path. Therefore the length of every path is no more than twice as long as any other path.
Theorem 4 –
A red-black tree with \(n \) nodes has height \(h \leq 2 \lg(n + 1) \).

Proof:
Let \(h \) be the height of the red-black tree with root \(x \). By Theorem 2,
\[
\text{bh}(x) \geq h/2
\]
From Theorem 1,
\[
\begin{align*}
 n & \geq 2^{\text{bh}(x)} - 1 \\
 \text{Therefore } n & \geq 2^{h/2} - 1 \\
 n + 1 & \geq 2^{h/2} \\
 \lg(n + 1) & \geq h/2 \\
 2\lg(n + 1) & \geq h
\end{align*}
\]
BOTTOM-UP INSERTION
Bottom –Up Insertion

- Insert node as usual in BST
- Color the node Red
- What Red-Black property may be violated?
 - Every node is Red or Black?
 - NULLs are Black?
 - If node is Red, both children must be Black?
 - Every path from node to descendant NULL must contain the same number of Blacks?
Bottom Up Insertion

- Insert node; Color it Red; X is pointer to it
- Cases
 0: X is the root -- color it Black
 1: Both parent and uncle are Red -- color parent and uncle Black, color grandparent Red. Point X to grandparent and check new situation.
 2 (zig-zag): Parent is Red, but uncle is Black. X and its parent are opposite type children -- color grandparent Red, color X Black, rotate left(right) on parent, rotate right(left) on grandparent
 3 (zig-zig): Parent is Red, but uncle is Black. X and its parent are both left (right) children -- color parent Black, color grandparent Red, rotate right(left) on grandparent
Case 1 – U is Red

Just Recolor and move up
Case 2 – Zig-Zag

Double Rotate
 X around P; X around G

Recolor G and X
Case 3 – Zig-Zig

Single Rotate P around G

Recolor P and G
Asymptotic Cost of Insertion

- $O(\lg n)$ to descend to insertion point
- $O(1)$ to do insertion
- $O(\lg n)$ to ascend and readjust == worst case only for case 1

- Total: $O(\lg n)$
Insert 4 into this R-B Tree
Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty Red-Black Tree
Top-Down Insertion

An alternative to this “bottom-up” insertion is “top-down” insertion.

Top-down is iterative. It moves down the tree, “fixing” things as it goes.

What is the objective of top-down’s “fixes”?
BOTTOM-UP DELETION
Recall “ordinary” BST Delete

1. If node to be deleted is a leaf, just delete it.
2. If node to be deleted has just one child, replace it with that child (splice)
3. If node to be deleted has two children, replace the **value** in the node by its in-order predecessor/successor’s value then delete the in-order predecessor/successor (a recursive step)
Bottom-Up Deletion

1. Do ordinary BST deletion. Eventually a “case 1” or “case 2” deletion will be done (leaf or just one child).
 -- If deleted node, U, is a leaf, think of deletion as replacing U with the NULL pointer, V.
 -- If U had one child, V, think of deletion as replacing U with V.

2. What can go wrong??
Which RB Property may be violated after deletion?

1. If U is Red?
 Not a problem – no RB properties violated

2. If U is Black?
 If U is not the root, deleting it will change the black-height along some path
Fixing the problem

- Think of V as having an “extra” unit of blackness. This extra blackness must be absorbed into the tree (by a red node), or propagated up to the root and out of the tree.

- There are four cases – our examples and “rules” assume that V is a left child. There are symmetric cases for V as a right child.
Terminology

- The node just deleted was U
- The node that replaces it is V, which has an extra unit of blackness
- The parent of V is P
- The sibling of V is S

- Black Node
- Red or Black and don’t care
- Red Node
Bottom-Up Deletion

Case 1

- V’s sibling, S, is Red
 - Rotate S around P and recolor S & P
- NOT a terminal case – One of the other cases will now apply
- All other cases apply when S is Black
Case 1 Diagram

V+ P S

Rotate S around P

P V+ S

Recolor S & P

V+ P S

P V+ S

Recolor S & P
Bottom-Up Deletion

Case 2

- V’s sibling, S, is Black and has two Black children.
 - Recolor S to be Red
 - P absorbs V’s extra blackness
 - If P is Red, we’re done (it absorbed the blackness)
 - If P is Black, it now has extra blackness and problem has been propagated up the tree
Case 2 diagram

Recolor S
P absorbs blackness

Either extra Black absorbed by P

or

P now has extra blackness
Bottom-Up Deletion

Case 3

- S is Black
- S’s right child is RED (Left child either color)
 - Rotate S around P
 - Swap colors of S and P, and color S’s right child Black

- This is the terminal case – we’re done
Case 3 diagrams

- Rotate S around P
- Swap colors of S & P
- Color S’s right child Black
Bottom-Up Deletion

Case 4

- S is Black, S’s right child is Black and S’s left child is Red
 - Rotate S’s left child around S
 - Swap color of S and S’s left child
 - Now in case 3
Case 4 Diagrams

- Rotate S’s left around S
- Swap colors of S and S’ s original left child
Top-Down Deletion

An alternative to the recursive “bottom-up” deletion is “top-down” deletion. This method is iterative. It moves down the tree only, “fixing” things as it goes.

What is the goal of top-down deletion?
Perform the following deletions, in the order specified
Delete 90, Delete 80, Delete 70