Tries and Huffman Coding
Tries
Information retrieval

- Given a collection of strings, perform “search” on the collection
- Pattern matching: is a given string X in the collection?
- Prefix matching: find all strings that have a given string X as a prefix
Tries

- Pronounced “try”, from retrieval (?)
- Tree-based data-structure for storing strings
 - Supports efficient pattern and prefix matching
Standard Tries

- A: an alphabet (set of valid characters)
- S: a set of strings from A
 - No string is the prefix of another
- Standard trie is an ordered tree
 - Nodes (except root) labeled with character from A
 - Tree as |S| leaves: concatenation of characters from root to leaf is the associated string
Standard Tries Example

- $S = \{\text{bear, bell, bid, bull, buy, sell, stock, stop}\}$
For standard trie T, collection S of strings of total length n, alphabet of size d:

- Every internal node of T has at most d children
 - How many children does the root have?
- T has $|S|$ leaves
- Height of T is length of longest string in S
- Number of nodes of T is $O(n)$
 - Worst case: no shared prefixes
Performance: d is the size of the alphabet, n the total size of S in characters, m the size of a given string

- Construct: $O(dn)$
- Insert: $O(dm)$
- Find: $O(dm)$

d is usually constant (e.g., natural language)
Standard Tries Applications

- Pattern or prefix matching
 - Tree search

- Word matching
 - Construct trie from a text
 - Find is successful if search terminates in a leaf
 - Running time independent of text size
Standard Tries Implementation

- Use a tree structure, with labels (characters) as keys
- Construct, insert, and find all rely on tree search
 - Not binary
Standard Tries Find

- Given a trie T and a pattern s

 1. \(n \leftarrow \text{root} \)
 2. \(\text{for } c \text{ in } s \)
 \(\text{if } n.\text{is_leaf}() \)
 \(\text{return False} \)
 3. \(\text{found_char }\leftarrow \text{False} \)
 4. \(\text{for } i = 1...n.\text{children}.\text{length} \)
 \(\text{if } c = = n.\text{children}[i].\text{key} \)
 \(n \leftarrow n.\text{children}[i] \)
 \(\text{found_char }\leftarrow \text{True} \)
 \(\text{break} \)
 5. \(\text{if } !\text{found_char} \)
 \(\text{return False} \)
 6. \(\text{return True} \)

- Finds if s is a prefix to at least a string in s
Standard Tries Find

What if we want to find if there is an exact match to s?

1. \(n \leftarrow \text{root} \)
2. \(\text{for c in s} \)
3. \(\quad \text{if n.is_leaf()} \)
4. \(\quad \quad \text{return False} \)
5. \(\quad \text{found_char} \leftarrow \text{False} \)
6. \(\quad \text{for i = 1...n.children.length} \)
7. \(\quad \quad \text{if c == n.children[i].key} \)
8. \(\quad \quad \quad n \leftarrow n.children[i] \)
9. \(\quad \quad \text{found_char} \leftarrow \text{True} \)
10. \(\quad \quad \text{break} \)
11. \(\quad \text{if !found_char} \)
12. \(\quad \quad \text{return False} \)
13. \(\quad \text{if n.is_leaf()} \)
14. \(\quad \quad \text{return True} \)
15. \(\text{return False} \)
Standard Tries Insertion

- Given a trie \(T \) and a pattern \(s \)
- Assume \(\text{find} \) returns last node of longest matching prefix in \(n \) and corresponding index in the string in \(\text{index} \)

1. \(n \leftarrow T.\text{root}, \text{index} \leftarrow 0 \)
2. \(\text{find}(s, n, \text{index}) \)
3. for \(i = \text{index} \ldots s.\text{length} \)
 4. \(\text{new}_n \leftarrow n.\text{children}.\text{add}(\text{new} \text{ Node}(s[i])) \)
5. \(n \leftarrow n.\text{new}_n \)
Standard Tries Construction

- Start from a text t and an empty tree T
 - Assume no repetitions and no prefixes in t
- Insert words in trie iteratively
 1. $T \leftarrow \text{Tree}()$
 2. for s in t
 3. T.insert(s)
Standard Tries Redundancy
Solution: Compressed Tries
Compressed Tries

- Every node has at least two children
- Nodes are labeled with strings
 - What is wrong with this?
 - Tree has $O(s)$ nodes, but still has $O(n)$ characters!
- Assume we have a lookup table with all strings
 - Label nodes with indices into the table and strings instead
 - Still $O(s)$ nodes, now size is also $O(s)$
 - Application: search engines
Compressed Tries with Indices

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>bell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>bid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>bull</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>buy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>sell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suffix Tries

- Encode all possible suffixes of a string of length \(m \)
 - There are \(O(m) \) such suffixes
 - Using standard tries: space \(O(m^2) \)
 - Using compressed tries: space \(O(m) \)

- Supports substring matching in time \(O(k) \), where \(k \) is the length of the substring
Suffix Tries Example

<table>
<thead>
<tr>
<th>m</th>
<th>i</th>
<th>n</th>
<th>i</th>
<th>m</th>
<th>i</th>
<th>z</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

```
  e
 / \
 i  m
 / \
 mize nimize ze
 / \
 nimize ze
```

```
  8,8
 / \
 2,2
 / \
 5,8 3,8 7,8
 / \
 3,8 7,8
 / \
 3,8 7,8
```
Huffman Coding
Data Compression

- We want to encode characters as bit-strings
 - Store documents on disk
 - Transmit information over a network
- We want to minimize the overall length of the bit-strings
Fixed-Length Strings

- Simple approach: use the same number of bits for each character
- For n characters, use $\lceil \log(n) \rceil$ bits per character
- Example: ASCII, UNICODE
- Can we do better?
Variable-Length Strings

- Characters occur with different frequencies
- Idea: use variable-length codes
 - Shorter codes for more frequent characters
Variable-Length Strings Example: Morse Code

<table>
<thead>
<tr>
<th>Character</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>0</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>01</td>
</tr>
</tbody>
</table>

- Originally conceived for telegraphic communication
- Assign short codes for common letters
- How do we decode 0101?
 - eta, aet, aa, etet
- Solution: additional “separation character”
 - 0-1-01: eta
 - Traditionally a pause: 0 pause 1 pause 01
Prefix Codes

- Morse code: some codes are *prefixes* of others
 - e (0) is a prefix for a (01)
- Prefix code: no encoding is a prefix for another
 - Given a set S of characters
 - \(c(x) \) converts x from S into a sequence of bits
 - \(c(x) \) is not a prefix of \(c(y) \) for any x, y in S
- To decode a string, read from left to right and add character x to the decoded string as soon as you recognize the code for x
Prefix Codes Example

<table>
<thead>
<tr>
<th>x</th>
<th>c(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>11</td>
</tr>
<tr>
<td>b</td>
<td>01</td>
</tr>
<tr>
<td>c</td>
<td>001</td>
</tr>
<tr>
<td>d</td>
<td>10</td>
</tr>
<tr>
<td>e</td>
<td>000</td>
</tr>
</tbody>
</table>

The binary string `0010000011101` can be decoded as `c e c a b`.
Optimal Prefix Codes

- Each character has a frequency \(f(x) \) in a text

\[
f(x) = \frac{\text{Times } x \text{ appears}}{\text{Total number of characters}} = \frac{n_x}{n}
\]

- Total text length: \(\sum n f(x) |c(x)| \)

- Average character length (ACL): \(\sum f(x) |c(x)| \)

- Goal: find the code with the minimum ACL
Prefix Codes Representation

- Binary tree T, each leaf corresponds to one character
 - Follow path from root to leaf: each time the path goes to a left child is a 0, right child is a 1
 - Must be a prefix code: characters are leaves
 - The length of an encoding is the depth of the leaf

- The optimal T (T^*) must be a full binary tree
 - Proof by contradiction: if a node has only one child, replace it with its child, reducing the length
Prefix Codes Representation Example

<table>
<thead>
<tr>
<th>x</th>
<th>c(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>11</td>
</tr>
<tr>
<td>b</td>
<td>01</td>
</tr>
<tr>
<td>c</td>
<td>001</td>
</tr>
<tr>
<td>d</td>
<td>10</td>
</tr>
<tr>
<td>e</td>
<td>000</td>
</tr>
</tbody>
</table>
Huffman Coding Key Idea

- Huffman coding recursively makes the lowest frequency characters the deepest in the tree
 - Given an unlabeled FBT, the optimal code assigns the lowest frequency characters to the deepest leaves

- The two lowest frequency characters y^* and z^* must be sibling leaves in the tree
 - y^*’s parent must have another child x.
 - This child must be the second lowest frequency character z^* (else, a shorter code would swap x with z^*)
Huffman Coding Algorithm

- Repeat:
 - Find two characters with lowest frequency y^*, z^*
 - Merge y^*, z^* into a super-character (parent node) w with $f_w = f_{y^*} + f_{z^*}$
 - Remove y^*, z^* from alphabet and add w
Huffman Code Pseudocode

HuffmanCode(frequencies)
1. n = new List<Node>
2. for f in frequencies
3. n.add(new Node(f))
4. q = priorityQueue(n)
5. while q.size() > 1
6. y = q.removeMin(), z = q.removeMin()
7. w = new Node(y.key + z.key)
8. w.left = y, w.right = z, y.parent = w, z.parent = w
9. q.insert(w)
10. T = new BinaryTree()
11. T.root = q.removeMin()
12. return T
Huffman Coding Example

- Find the Huffman code for the following alphabet
- Solution on blackboard

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.32</td>
</tr>
<tr>
<td>b</td>
<td>0.25</td>
</tr>
<tr>
<td>c</td>
<td>0.20</td>
</tr>
<tr>
<td>d</td>
<td>0.18</td>
</tr>
<tr>
<td>e</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Huffman Coding Optimality

- Proof by induction on the size of the alphabet
 - Base case: alphabet of size two produces 1 bit code, which is clearly optimal
 - Inductive step:
 - T' is the tree produced with alphabet of n-1: optimal by inductive hypothesis
 - T is produced by adding y and z as children of w
 - ACL(T) = ACL(T') + f_y + f_z
 - If T is suboptimal, then an optimal tree Z must have y and z as sibling leaves, and must be generated by adding y and z as children of w to a tree Z'
 - ACL(Z) = ACL(Z') + f_y + f_z
 - ACL(Z) < ACL(T) \Rightarrow ACL(Z') < ACL(T')... contradiction!
Huffman Coding Efficiency

- For an alphabet of size n, the algorithm enters the loop $O(n)$ times.
- Each loop involves 2q.removeMin() and one q.insert().
- Using a min heap:
 - Each operation takes $O(\log n)$.
 - Total running time: $O(n \log n)$.