Graphs

Shortest Path and Topological Sort
Example Relational Networks

School Friendship Network
(from Moody 2001)

Yeast Metabolic Network
(from https://www.nd.edu/~networks/cell/)

Terrorist Network
(by Valdis Krebs, Orgnet.com)

Protein-Protein Interactions
(by Peter Uetz)
More Relational Networks

Flickr Social Network
(from http://www.flickr.com/photos/gustavog/sets/164006/)

Genomic Associations
(from Snel et al., 2002)

Campaign Contributions from Oil Companies
(from http://oilmoney.priceofoil.org/)

Seagrass Food Web
(generated at http://drjoe.biology.ecu.edu)
Basic Graph Definitions

- A graph $G = (V, E)$ consists of a finite set of vertices, V, and a finite set of edges, E.
- Each edge is a pair (v, w) where $v, w \in V$.
 - V and E are sets, so each vertex $v \in V$ is unique, and each edge $e \in E$ is unique.
 - Edges are sometimes called arcs or lines.
 - Vertices are sometimes called nodes or points.
Graph Applications

- Graphs can be used to model a wide range of applications including
- Intersections and streets within a city
- Roads/trains/airline routes connecting cities/countries
- Computer networks
- Electronic circuits
Basic Graph Definitions (2)

- A **directed graph** is a graph in which the edges are ordered pairs. That is, \((u,v) \neq (v,u), u, v \in V\). Directed graphs are sometimes called **digraphs**.

- An **undirected graph** is a graph in which the edges are unordered pairs. That is, \((u,v) = (v,u)\).

- A **sparse graph** is one with “few” edges. That is \(|E| = O(|V|)\)

- A **dense graph** is one with “many” edges. That is \(|E| = O(|V|^2)\)
Undirected Graph

- All edges are two-way. Edges are unordered pairs.
- $V = \{ 1, 2, 3, 4, 5 \}$
- $E = \{ (1,2), (2, 3), (3, 4), (2, 4), (4, 5), (5, 1) \}$
Directed Graph

- All edges are “one-way” as indicated by the arrows. Edges are ordered pairs.
- $V = \{ 1, 2, 3, 4, 5 \}$
- $E = \{ (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) \}$
A Single Graph with Multiple Components

![Graph Diagram](image)
Basic Graph Definitions (3)

- Vertex w is **adjacent to** vertex v if and only if $(v, w) \in E$.
- For undirected graphs, with edge (v, w), and hence also (w, v), w is adjacent to v and v is adjacent to w.
- An edge may also have:
 - **weight** or **cost** -- an associated value
 - **label** -- a unique name
- The **degree** of a vertex, v, is the number of vertices adjacent to v. Degree is also called **valence**.
For directed graphs vertex \(w \) is \textbf{adjacent to} vertex \(v \) if and only if \((v, w) \in E\).

\textbf{Indegree} of a vertex \(w \) is the number of edges \((v,w)\).

\textbf{OutDegree} of a vertex \(w \) is the number of edges\((w,v)\).
Paths in Graphs

- A **path** in a graph is a sequence of vertices $w_1, w_2, w_3, \ldots, w_n$ such that $(w_i, w_{i+1}) \in E$ for $1 \leq i < n$.

- The **length** of a path in a graph is the number of edges on the path. The length of the path from a vertex to itself is 0.

- A **simple path** is a path such that all vertices are distinct, except that the first and last may be the same.

- A **cycle** in a graph is a path $w_1, w_2, w_3, \ldots, w_n$, $w \in V$ such that:
 - there are at least two vertices on the path
 - $w_1 = w_n$ (the path starts and ends on the same vertex)
 - if any part of the path contains the subpath w_i, w_j, w_i, then each of the edges in the subpath is distinct (i.e., no backtracking along the same edge)

- A **simple cycle** is one in which the path is simple.

- A directed graph with no cycles is called a **directed acyclic graph**, often abbreviated as DAG.
How many simple paths from 1 to 4 and what are their lengths?
Connectedness in Graphs

- An undirected graph is **connected** if there is a path from every vertex to every other vertex.
- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.
- A directed graph is **weakly connected** if there would be a path from every vertex to every other vertex, disregarding the direction of the edges.
- A **complete** graph is one in which there is an edge between every pair of vertices.
- A **connected component** of a graph is any maximal connected subgraph. Connected components are sometimes simply called **components**.
Disjoint Sets and Graphs

- Disjoint sets can be used to determine connected components of an undirected graph.

- For each edge, place its two vertices \((u \text{ and } v)\) in the same set -- i.e. \(\text{union}(u, v)\)

- When all edges have been examined, the forest of sets will represent the connected components.

- Two vertices, \(x, y\), are connected if and only if \(\text{find}(x) = \text{find}(y)\)
Undirected Graph/Disjoint Set Example

Sets representing connected components
\{ 1, 2, 3, 4, 5 \}
\{ 6 \}
\{ 7, 8, 9 \}
DiGraph / Strongly Connected Components
A Graph ADT

- Has some data elements
 - Vertices and Edges
- Has some operations
 - `getDegree(u)` -- Returns the degree of vertex u (outdegree of vertex u in directed graph)
 - `getAdjacent(u)` -- Returns a list of the vertices adjacent to vertex u (list of vertices that u points to for a directed graph)
 - `isAdjacentTo(u, v)` -- Returns TRUE if vertex v is adjacent to vertex u, FALSE otherwise.
- Has some associated algorithms to be discussed.
Adjacency Matrix Implementation

- Uses array of size $|V| \times |V|$ where each entry (i, j) is boolean
 - TRUE if there is an edge from vertex i to vertex j
 - FALSE otherwise
 - store weights when edges are weighted

- Very simple, but large space requirement $= O(|V|^2)$
- Appropriate if the graph is dense.
- Otherwise, most of the entries in the table are FALSE.
- For example, if a graph is used to represent a street map like Manhattan in which most streets run E/W or N/S, each intersection is attached to only 4 streets and $|E| < 4*|V|$. If there are 3000 intersections, the table has 9,000,000 entries of which only 12,000 are TRUE.
Undirected Graph / Adjacency Matrix

```
1 0 1 0 0 1
1 0 1 1 1 0
3 0 1 0 1 0
4 0 1 1 0 1
5 1 0 0 1 0
```
Directed Graph / Adjacency Matrix

1 2 3 4 5
1 0 1 0 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 1 0 1
5 1 0 0 1 0
Weighted, Directed Graph / Adjacency Matrix
Adjacency Matrix Performance

- **Storage requirement:** $O(|V|^2)$
- **Performance:**

<table>
<thead>
<tr>
<th>Method</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>getDegree (u)</td>
<td></td>
</tr>
<tr>
<td>isAdjacentTo(u, v)</td>
<td></td>
</tr>
<tr>
<td>getAdjacent(u)</td>
<td></td>
</tr>
</tbody>
</table>
Adjacency List Implementation

- If the graph is sparse, then keeping a list of adjacent vertices for each vertex saves space. Adjacency Lists are the commonly used representation. The lists may be stored in a data structure or in the Vertex object itself.

 - **Vector of lists**: A vector of lists of vertices. The i-th element of the vector is a list, \(L_i \), of the vertices adjacent to \(v_i \).

- If the graph is sparse, then the space requirement is \(O(|E| + |V|) \), “linear in the size of the graph”

- If the graph is dense, then the space requirement is \(O(|V|^2) \)
Vector of Lists

1
8
2

2
3

5

2
6
5

3

4

2
1

2
4
2
3
5
1
4

1
2
3
4
5
Adjacency List Performance

- Storage requirement:
- Performance:

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>getDegree(u)</td>
</tr>
<tr>
<td>isAdjacentTo(u, v)</td>
</tr>
<tr>
<td>getAdjacent(u)</td>
</tr>
</tbody>
</table>
Graph Traversals

- Like trees, graphs can be traversed breadth-first or depth-first.
 - Use stack (or recursion) for depth-first traversal
 - Use queue for breadth-first traversal

- Unlike trees, we need to specifically guard against repeating a path from a cycle. Mark each vertex as “visited” when we encounter it and do not consider visited vertices more than once.
Graph Traversals

- Both take time: $O(V+E)$
void bfs()
{
 Queue<Vertex> q;
 Vertex u, w;

 for all v in V, d[v] = ¥ // mark each vertex unvisited
 q.enqueue(startvertex); // start with any vertex
 d[startvertex] = 0; // mark visited
 while (!q.isEmpty()) {
 u = q.dequeue();
 for each Vertex w adjacent to u {
 if (d[w] == ¥) { // w not marked as visited
 d[w] = d[u]+1; // mark visited
 path[w] = u; // where we came from
 q.enqueue(w);
 }
 }
 }
}
Breadth-First Example

BFS Traversal

v1 v2 v3 v4
Unweighted Shortest Path Problem

- Unweighted shortest-path problem: Given as input an unweighted graph, $G = (V, E)$, and a distinguished starting vertex, s, find the shortest unweighted path from s to every other vertex in G.

- After running BFS algorithm with s as starting vertex, the length of the shortest path length from s to i is given by $d[i]$. If $d[i] = \infty$, then there is no path from s to i. The path from s to i is given by traversing path[] backwards from i back to s.
Recursive Depth First Traversal

```c
void dfs() {
    for (each v ∈ V)
        dfs(v)
}

void dfs(Vertex v) {
    if (!v.visited)
    {
        v.visited = true;
        for each Vertex w adjacent to v)
            if ( !w.visited )
                dfs(w)
    }
}
```
DFS with explicit stack

1 procedure DFS-iterative(G,v):
2 let S be a stack
3 S.push(v)
4 while S is not empty
5 v = S.pop()
6 if v is not labeled as discovered:
7 label v as discovered
8 for all edges from v to w in G.adjacentEdges(v) do
9 S.push(w)
DFS Example

DFS Traversal

v1 v3 v2 v4
Traversals Performance

- What is the performance of DF and BF traversal?
- Each vertex appears in the stack or queue exactly once in the worst case. Therefore, the traversals are at least $O(|V|)$. However, at each vertex, we must find the adjacent vertices. Therefore, df- and bf-traversal performance depends on the performance of the getAdjacent operation.
GetAdjacent

- Method 1: Look at every vertex (except u), asking “are you adjacent to u?”

List<Vertex> L;
for each Vertex v except u
 if (v.isAdjacentTo(u))
 L.push_back(v);

- Assuming O(1) performance for push_back and isAdjacentTo, then getAdjacent has O(|V|) performance and traversal performance is O(|V^2|);
GetAdjacent (2)

- Method 2: Look only at the edges which impinge on u. Therefore, at each vertex, the number of vertices to be looked at is \(D(u) \), the degree of the vertex.
- This approach is \(O(D(u)) \). The traversal performance is

\[
O(\sum_{i=1}^{V} D(v_i)) = O(|E|)
\]

since \texttt{getAdjacent} is done \(O(|V|) \) times.
- However, in a disconnected graph, we must still look at every vertex, so the performance is \(O(|V| + |E|) \).
Number of Edges

Theorem: The number of edges in an undirected graph \(G = (V,E) \) is \(O(|V|^2) \).

Proof: Suppose \(G \) is fully connected. Let \(p = |V| \).

Then we have the following situation:

<table>
<thead>
<tr>
<th>vertex</th>
<th>connected to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3,4,5,...,p</td>
</tr>
<tr>
<td>2</td>
<td>1,3,4,5,...,p</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>p</td>
<td>1,2,3,4,...,p-1</td>
</tr>
</tbody>
</table>

- There are \(p(p-1)/2 = O(|V|^2) \) edges.
- So \(O(|E|) = O(|V|^2) \).
Weighted Shortest Path Problem

Single-source shortest-path problem:
Given as input a weighted graph, \(G = (V, E) \), and a distinguished starting vertex, \(s \), find the shortest weighted path from \(s \) to every other vertex in \(G \).

Use Dijkstra’s algorithm

– Keep tentative distance for each vertex giving shortest path length using vertices visited so far.
– Record vertex visited before this vertex (to allow printing of path).
– At each step choose the vertex with smallest distance among the unvisited vertices (greedy algorithm).
Dijkstra’s Algorithm

- The pseudo code for Dijkstra’s algorithm assumes the following structure for a Vertex object

```java
class Vertex
{
    public List adj; // Adjacency list
    public boolean known;
    public DisType dist; // DistType is probably int
    public Vertex path;
    // Other fields and methods as needed
}
```
Dijkstra’s Algorithm

```java
void dijksra(Vertex start) {
    for each Vertex v in V {
        v.dist = Integer.MAX_VALUE;
        v.known = false;
        v.path = null;
    }
    start.distance = 0;

    while there are unknown vertices {
        v = unknown vertex with smallest distance
        v.known = true;
        for each Vertex w adjacent to v
            if (!w.known)
                if (v.dist + weight(v, w) < w.distance){
                    decrease(w.dist to v.dist+weight(v, w))
                    w.path = v;
                }
    }
}
```
Dijkstra Example
Correctness of Dijkstra’s Algorithm

- The algorithm is correct because of a property of shortest paths:
- If $P_k = v_1, v_2, \ldots, v_j, v_k$, is a shortest path from v_1 to v_k, then $P_j = v_1, v_2, \ldots, v_j$, must be a shortest path from v_1 to v_j. Otherwise P_k would not be as short as possible since P_k extends P_j by just one edge (from v_j to v_k).
- Also, P_j must be shorter than P_k (assuming that all edges have positive weights). So the algorithm must have found P_j on an earlier iteration than when it found P_k.
- i.e. Shortest paths can be found by extending earlier known shortest paths by single edges, which is what the algorithm does.
Running Time of Dijkstra’s Algorithm

- The running time depends on how the vertices are manipulated.
- The main ‘while’ loop runs $O(|V|)$ time (once per vertex).
- Finding the “unknown vertex with smallest distance” (inside the while loop) can be a simple linear scan of the vertices and so is also $O(|V|)$. With this method the total running time is $O(|V|^2)$. This is acceptable (and perhaps optimal) if the graph is dense ($|E| = O(|V|^2)$) since it runs in linear time on the number of edges.
- If the graph is sparse, ($|E| = O(|V|)$), we can use a priority queue to select the unknown vertex with smallest distance, using the deleteMin operation ($O(\log |V|)$). We must also decrease the path lengths of some unknown vertices, which is also $O(\log |V|)$. The deleteMin operation is performed for every vertex, and the “decrease path length” is performed for every edge, so the running time is $O(|E| \log |V| + |V|\log |V|) = O((|V|+|E|) \log |V|) = O(|E| \log |V|)$ if all vertices are reachable from the starting vertex.
Dijkstra and Negative Edges

- Note in the previous discussion, we made the assumption that all edges have positive weight. If any edge has a negative weight, then Dijkstra’s algorithm fails. Why is this so?
- Suppose a vertex, u, is marked as “known”. This means that the shortest path from the starting vertex, s, to u has been found.
- However, it’s possible that there is negatively weighted edge from an unknown vertex, v, back to u. In that case, taking the path from s to v to u is actually shorter than the path from s to u without going through v.
- Other algorithms exist that handle edges with negative weights for weighted shortest-path problem.
Directed Acyclic Graphs

- A **directed acyclic graph** is a directed graph with no cycles.

- A **strict partial order** R on a set S is a binary relation such that
 - for all $a \in S$, aRa is false (irreflexive property)
 - for all $a,b,c \in S$, if aRb and bRc then aRc is true (transitive property)

- To represent a partial order with a DAG:
 - represent each member of S as a vertex
 - for each pair of vertices (a,b), insert an edge from a to b if and only if aRb
Example DAG

A DAG implies an ordering on events.

Slide by Rose Hoberman (CMU)
In a complex DAG, it can be hard to find a schedule that obeys all the constraints.
More Definitions

- Vertex i is a **predecessor** of vertex j if and only if there is a path from i to j.
- Vertex i is an **immediate predecessor** of vertex j if and only if (i, j) is an edge in the graph.
- Vertex j is a **successor** of vertex i if and only if there is a path from i to j.
- Vertex j is an **immediate successor** of vertex i if and only if (i, j) is an edge in the graph.
- The **indegree** of a vertex, v, is the number of edges (u, v), i.e. the number of edges that come “into” v.
A topological ordering of the vertices of a DAG $G = (V,E)$ is a linear ordering such that, for vertices $i, j \in V$, if i is a predecessor of j, then i precedes j in the linear order, i.e. if there is a path from v_i to v_j, then v_i comes before v_j in the linear order.
Topological Sort

- For a directed acyclic graph $G = (V,E)$
- A topological sort is an ordering of all of G’s vertices v_1, v_2, \ldots, v_n such that...

Formally: for every edge (v_i, v_k) in E, $i<k$.

Visually: all arrows are pointing to the right
Topological Sort

- There are often many possible topological sorts of a given DAG
- Topological orders for this DAG:
 - 1, 2, 5, 4, 3, 6, 7
 - 2, 1, 5, 4, 7, 3, 6
 - 2, 5, 1, 4, 7, 3, 6
 - Etc.

- Each topological order is a feasible schedule.
Topological Sorts for Cyclic Graphs?

Impossible!

• If \(v \) and \(w \) are two vertices on a cycle, there exist paths from \(v \) to \(w \) and from \(w \) to \(v \).
• Any ordering will contradict one of these paths.
Topological sort algorithm

Algorithm

- Assume indegree is stored with each node.
- Repeat until no nodes remain:
 - Choose a root and output it.
 - Remove the root and all its edges.

Performance

- $O(V^2 + E)$, if linear search is used to find a root.
Better topological sort

- Algorithm:
 - Scan all nodes, pushing roots onto a stack.
 - Repeat until stack is empty:
 - Pop a root r from the stack and output it.
 - For all nodes n such that (r,n) is an edge, decrement n’s indegree. If 0 then push onto the stack.

- $O(V + E)$, so still $O(V^2)$ in worst case, but better for sparse graphs.

Q: Why is this algorithm correct?
Correctness

- Clearly any ordering produced by this algorithm is a topological order

But...

- Does every DAG have a topological order, and if so, is this algorithm guaranteed to find one?
Exercise

■ Prove:
 - This algorithm never gets stuck, i.e. if there are unvisited nodes then at least one of them has an indegree of zero.

■ Approach:
 - Prove that if at any point there are unseen vertices but none of them have an indegree of 0, a cycle must exist, contradicting our assumption of a DAG.
void topsort() throws CycleFoundException
{
 Queue<Vertex> q = new Queue<Vertex>();
 int counter = 0;

 for each Vertex v
 if(v.indegree == 0)
 q.enqueue(v);

 while(!q.isEmpty())
 {
 Vertex v = q.dequeue();
 v.topNum = ++counter; // Assign next number

 for each Vertex w adjacent to v
 if(--w.indegree == 0)
 q.enqueue(w);
 }

 if(counter != NUM_VERTICES)
 throw new CycleFoundException();
}
Running Time of TopSort

1. At most, each vertex is enqueued just once, so there are $O(|V|)$ constant time queue operations.

2. The body of the for loop is executed at most once per edges = $O(|E|)$

3. The initialization is proportional to the size of the graph if adjacency lists are used = $O(|E| + |V|)$

4. The total running time is therefore $O(|E| + |V|)$