Hashing Analysis

Some slides and materials by Uri Zwick (Tel Aviv University)
Hashing with open addressing

“Uniform probing”

Hash table of size m

Assume that $h : U \times [m] \rightarrow [m]$

Insert key k in the first free position among $h(k,0), h(k,1), h(k,2), \ldots, h(k,m-1)$

(Sometimes) assumed to be a permutation

Table is not full \Rightarrow Insertion succeeds

To search, follow the same order
Linear probing

“The most important hashing technique”

\[h(k, i) = (h(k) + i) \mod m \]

More *probes* than uniform probing due to *clustering*: long runs tend to get longer and merge with other runs

But, many fewer *cache misses*

Extremely efficient in practice

How do we analyze it?

Which hash functions should we use?
Order of insertions

Theorem: The set of occupied cell and the total number of probes done while inserting a set of items into a hash table using linear probing does not depend on the order in which the items are inserted.

On-Your-Own Exercise: Prove the theorem.

Is the same true for uniform probing?
Probabilistic analysis of uniform probing

[Petersen (1957)]

\(n \) – number of elements in table
\(m \) – size of hash table
\(\alpha = n/m \) – load factor (Note: \(\alpha \leq 1 \))

Uniform probing: for every \(k \in U \),
\(h(k, 0), \ldots, h(k, m - 1) \) is random permutation, independent of all other permutations

Expected no. of probes in an **unsuccessful** search of a *random* item is at most
\[
\frac{1}{1 - \alpha}
\]

Expected no. of probes in a **successful** search is at most
\[
\frac{1}{\alpha} \ln \frac{1}{1 - \alpha}
\]
Claim: Expected no. of probes in an unsuccessful search is at most: \[\frac{1}{1-\alpha} \]

The probability that a random cell is occupied is \(\alpha \)

The probability that the first \(i \) cells probed are all occupied is at most \(\alpha^i \)

\[1 + \alpha + \alpha^2 + \ldots = \frac{1}{1-\alpha} \]

Exercise: Do the calculation more carefully and show that the expected no. of probes in an unsuccessful search is exactly \((m + 1)/(m - n + 1) \)
Probabilistic analysis of linear probing

[Knuth (1962)]

\(\alpha = n/m \) – load factor \((\alpha \leq 1)\)

Random hash function:
for every \(k \in U, h(k) \) is uniformly distributed,
independent of all other \(h(k'), \) for \(k \neq k' \)

Expected no. of probes in an unsuccessful search is at most
\[\frac{1}{2} \left(1 + \left(\frac{1}{1 - \alpha} \right)^2 \right) \]

Expected no. of probes in a successful search of a random item is at most
\[\frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right) \]
Expected number of probes

Assuming random hash functions

<table>
<thead>
<tr>
<th></th>
<th>Unsuccessful Search</th>
<th>Successful Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform Probing</td>
<td>$\frac{1}{1-\alpha}$</td>
<td>$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$</td>
</tr>
<tr>
<td>Linear Probing</td>
<td>$\frac{1}{2} \left(1 + \left(\frac{1}{1-\alpha} \right)^2 \right)$</td>
<td>$\frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right)$</td>
</tr>
</tbody>
</table>

When, say, $\alpha \leq 0.6$, all small constants.
Expected number of probes

\[\frac{1}{2} \left(1 + \left(\frac{1}{1 - \alpha} \right)^2 \right) \]

\[\frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right) \]

\[\frac{1}{1 - \alpha} \]

\[\frac{1}{\alpha} \ln \frac{1}{1 - \alpha} \]
Double Hashing

• Let $f(i)\ use\ another\ hash\ function$

\[f(i) = i \times h_2(k) \]

Then $h(k, i) = (h'(k) + i \times h_2(k)) \mod m$

And probes are performed at distances of $h_2(k), 2 \times h_2(k), 3 \times h_2(k), 4 \times h_2(k)$, etc

• Choosing $h_2(k)$
 – Don’t allow $h_2(k) = 0$ for any k.
 – A good choice:
 $h_2(k) = R - (k \mod R)$ with R a prime smaller than m

• Characteristics
 – No clustering problem
 – Requires a second hash function
Expected number of probes

Assuming *random* hash functions

<table>
<thead>
<tr>
<th></th>
<th>Unsuccessful Search</th>
<th>Successful Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform Probing</td>
<td>(\frac{1}{1-\alpha})</td>
<td>(\frac{1}{\alpha} \ln \frac{1}{1-\alpha})</td>
</tr>
<tr>
<td>& Double Hashing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(where clustering doesn’t occur)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Probing</td>
<td>(\frac{1}{2} \left(1 + \left(\frac{1}{1-\alpha} \right)^2 \right))</td>
<td>(\frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right))</td>
</tr>
</tbody>
</table>

When, say, \(\alpha \leq 0.6 \), all small constants
Revisiting Fibonacci Hashing

(For an intuitive more-detailed explanation of why it works see https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/)
Multiplication Method

- The hash function:
 \[h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor \]
 where A is some real positive constant.

- A very good choice of A is the inverse of the “golden ratio.”

- Given two positive numbers x and y, the ratio x/y is the “golden ratio” if \(\phi = x/y = (x+y)/x \)

- The golden ratio:
 \[x^2 - xy - y^2 = 0 \quad \Rightarrow \quad \phi^2 - \phi - 1 = 0 \]
 \[\phi = (1 + \sqrt{5})/2 = 1.618033989... \]
 \[\sim= \text{Fib}_i/\text{Fib}_{i-1} \]
Fibonacci Hashing

h(k) vs. k
Phyllotactic Ratios: Subdividing the Circle

$360^\circ / \phi \approx 222.5^\circ$, or, equivalently, $360^\circ - 360^\circ / \phi \approx 137.5^\circ$, the most common leaf angle observed
Multiplication Method (cont.)

- Because of the relationship of the golden ratio to Fibonacci numbers, this particular value of A in the multiplication method is called “Fibonacci hashing.”

- Some values of

\[h(k) = \lfloor m(k \phi^{-1} - \lfloor k \phi^{-1} \rfloor) \rfloor \]

- \[= 0 \quad \text{for } k = 0 \]
- \[= 0.618m \text{ for } k = 1 \quad (\phi^{-1} = 1/1.618... = 0.618...) \]
- \[= 0.236m \text{ for } k = 2 \]
- \[= 0.854m \text{ for } k = 3 \]
- \[= 0.472m \text{ for } k = 4 \]
- \[= 0.090m \text{ for } k = 5 \]
- \[= 0.708m \text{ for } k = 6 \]
- \[= 0.326m \text{ for } k = 7 \]
- \[= ... \]
- \[= 0.777m \text{ for } k = 32 \]