10.2 AVL Trees

In the previous section, we discussed what should be an efficient map data structure, but the worst-case performance it achieves for the various operations is linear time, which is no better than the performance of list- and array-based map implementations (such as the unordered lists and search tables discussed in Chapter 9). In this section, we describe a simple way of correcting this problem in order to achieve logarithmic time for all the fundamental map operations.

Definition of an AVL Tree

The simple correction is to add a rule to the binary search tree definition that maintains a logarithmic height for the tree. The rule we consider in this section is the following **height-balance property**, which characterizes the structure of a binary search tree T in terms of the heights of its internal nodes (recall from Section 7.2.1 that the height of a node v in a tree is the length of the longest path from v to an external node):

Height-Balance Property: For every internal node v of T, the heights of the children of v differ by at most 1.

Any binary search tree T that satisfies the height-balance property is said to be an **AVL tree**, named after the initials of its inventors, Adel’son-Vel’skii and Landis. An example of an AVL tree is shown in Figure 10.8.

![Figure 10.8: An example of an AVL tree. The keys of the entries are shown inside the nodes, and the heights of the nodes are shown next to the nodes.](image)

An immediate consequence of the height-balance property is that a subtree of an AVL tree is itself an AVL tree. The height-balance property has also the important consequence of keeping the height small, as shown in the following proposition.
Proposition 10.2: The height of an AVL tree storing n entries is $O(\log n)$.

Justification: Instead of trying to find an upper bound on the height of an AVL tree directly, it turns out to be easier to work on the “inverse problem” of finding a lower bound on the minimum number of internal nodes $n(h)$ of an AVL tree with height h. We show that $n(h)$ grows at least exponentially. From this, it is an easy step to derive that the height of an AVL tree storing n entries is $O(\log n)$.

To start with, notice that $n(1) = 1$ and $n(2) = 2$, because an AVL tree of height 1 must have at least one internal node and an AVL tree of height 2 must have at least two internal nodes. Now, for $h \geq 3$, an AVL tree with height h and the minimum number of nodes is such that both its subtrees are AVL trees with the minimum number of nodes: one with height $h - 1$ and the other with height $h - 2$. Taking the root into account, we obtain the following formula that relates $n(h)$ to $n(h - 1)$ and $n(h - 2)$, for $h \geq 3$:

$$n(h) = 1 + n(h - 1) + n(h - 2). \quad (10.1)$$

At this point, the reader familiar with the properties of Fibonacci progressions (Section 2.2.3 and Exercise C-4.17) already sees that $n(h)$ is a function exponential in h. For the rest of the readers, we will proceed with our reasoning.

Formula 10.1 implies that $n(h)$ is a strictly increasing function of h. Thus, we know that $n(h - 1) > n(h - 2)$. Replacing $n(h - 1)$ with $n(h - 2)$ in Formula 10.1 and dropping the 1, we get, for $h \geq 3$,

$$n(h) > 2 \cdot n(h - 2). \quad (10.2)$$

Formula 10.2 indicates that $n(h)$ at least doubles each time h increases by 2, which intuitively means that $n(h)$ grows exponentially. To show this fact in a formal way, we apply Formula 10.2 repeatedly, yielding the following series of inequalities:

$$
n(h) > 2 \cdot n(h - 2) > 4 \cdot n(h - 4) > 8 \cdot n(h - 6) > \cdots > 2^i \cdot n(h - 2i). \quad (10.3)$$

That is, $n(h) > 2^i \cdot n(h - 2i)$, for any integer i, such that $h - 2i \geq 1$. Since we already know the values of $n(1)$ and $n(2)$, we pick i so that $h - 2i$ is equal to either 1 or 2. That is, we pick

$$i = \left\lceil \frac{h}{2} \right\rceil - 1.$$
By substituting the above value of i in formula 10.3, we obtain, for $h \geq 3$,

$$
n(h) > 2^{\left\lfloor \frac{h}{2} \right\rfloor - 1} \cdot n \left(h - 2 \left\lceil \frac{h}{2} \right\rceil + 2 \right)$$

$$
\geq 2^{\left\lfloor \frac{h}{2} \right\rfloor - 1} n(1)
$$

$$
\geq 2^{\frac{h}{2} - 1}. \quad (10.4)
$$

By taking logarithms of both sides of formula 10.4, we obtain

$$
\log n(h) > \frac{h}{2} - 1,
$$

from which we get

$$
h < 2\log n(h) + 2, \quad (10.5)
$$

which implies that an AVL tree storing n entries has height at most $2\log n + 2$. ■

By Proposition 10.2 and the analysis of binary search trees given in Section 10.1, the operation find, in a map implemented with an AVL tree, runs in time $O(\log n)$, where n is the number of entries in the map. Of course, we still have to show how to maintain the height-balance property after an insertion or removal.

10.2.1 Update Operations

The insertion and removal operations for AVL trees are similar to those for binary search trees, but with AVL trees we must perform additional computations.

Insertion

An insertion in an AVL tree T begins as in an insert operation described in Section 10.1.2 for a (simple) binary search tree. Recall that this operation always inserts the new entry at a node w in T that was previously an external node, and it makes w become an internal node with operation `insertAtExternal`. That is, it adds two external node children to w. This action may violate the height-balance property, however, for some nodes increase their heights by one. In particular, node w, and possibly some of its ancestors, increase their heights by one. Therefore, let us describe how to restructure T to restore its height balance.

Given a binary search tree T, we say that an internal node v of T is **balanced** if the absolute value of the difference between the heights of the children of v is at most 1, and we say that it is **unbalanced** otherwise. Thus, the height-balance property characterizing AVL trees is equivalent to saying that every internal node is balanced.

Suppose that T satisfies the height-balance property, and hence is an AVL tree, prior to our inserting the new entry. As we have mentioned, after performing the
10.2. AVL Trees

operation insertAtExternal on T, the heights of some nodes of T, including w, increase. All such nodes are on the path of T from w to the root of T, and these are the only nodes of T that may have just become unbalanced. (See Figure 10.9(a).) Of course, if this happens, then T is no longer an AVL tree; hence, we need a mechanism to fix the “unbalance” that we have just caused.

![Figure 10.9](image)

Figure 10.9: An example insertion of an entry with key 54 in the AVL tree of Figure 10.8: (a) after adding a new node for key 54, the nodes storing keys 78 and 44 become unbalanced; (b) a trinode restructuring restores the height-balance property. We show the heights of nodes next to them, and we identify the nodes x, y, and z participating in the trinode restructuring.

We restore the balance of the nodes in the binary search tree T by a simple “search-and-repair” strategy. In particular, let z be the first node we encounter in going up from w toward the root of T such that z is unbalanced. (See Figure 10.9(a).) Also, let y denote the child of z with higher height (and note that node y must be an ancestor of w). Finally, let x be the child of y with higher height (there cannot be a tie and node x must be an ancestor of w). Also, node x is a grandchild of z and could be equal to w. Since z became unbalanced because of an insertion in the subtree rooted at its child y, the height of y is 2 greater than its sibling.

We now rebalance the subtree rooted at z by calling the **trinode restructuring** function, `restructure(x)`, given in Code Fragment 10.12 and illustrated in Figures 10.9 and 10.10. A trinode restructuring temporarily renames the nodes x, y, and z as a, b, and c, so that a precedes b and b precedes c in an inorder traversal of T. There are four possible ways of mapping x, y, and z to a, b, and c, as shown in Figure 10.10, which are unified into one case by our relabeling. The trinode restructuring then replaces z with the node called b, makes the children of this node be a and c, and makes the children of a and c be the four previous children of x, y, and z (other than x and y) while maintaining the inorder relationships of all the nodes in T.
Algorithm \text{restructure}(x):

\textbf{Input:} A node \(x\) of a binary search tree \(T\) that has both a parent \(y\) and a grandparent \(z\)

\textbf{Output:} Tree \(T\) after a trinode restructuring (which corresponds to a single or double rotation) involving nodes \(x, y,\) and \(z\)

1: Let \((a, b, c)\) be a left-to-right (inorder) listing of the nodes \(x, y,\) and \(z,\) and let \((T_0, T_1, T_2, T_3)\) be a left-to-right (inorder) listing of the four subtrees of \(x, y,\) and \(z\) not rooted at \(x, y,\) or \(z.\)

2: Replace the subtree rooted at \(z\) with a new subtree rooted at \(b.\)

3: Let \(a\) be the left child of \(b\) and let \(T_0\) and \(T_1\) be the left and right subtrees of \(a,\) respectively.

4: Let \(c\) be the right child of \(b\) and let \(T_2\) and \(T_3\) be the left and right subtrees of \(c,\) respectively.

\textbf{Code Fragment 10.12:} The trinode restructuring operation in a binary search tree.

The modification of a tree \(T\) caused by a trinode restructuring operation is often called a \textit{rotation}, because of the geometric way we can visualize the way it changes \(T.\) If \(b = y,\) the trinode restructuring method is called a \textit{single rotation}, for it can be visualized as “rotating” \(y\) over \(z.\) (See Figure 10.10(a) and (b).) Otherwise, if \(b = x,\) the trinode restructuring operation is called a \textit{double rotation}, for it can be visualized as first “rotating” \(x\) over \(y\) and then over \(z.\) (See Figure 10.10(c) and (d), and Figure 10.9.) Some computer researchers treat these two kinds of rotations as separate methods, each with two symmetric types. We have chosen, however, to unify these four types of rotations into a single trinode restructuring operation. No matter how we view it, though, the trinode restructuring method modifies parent-child relationships of \(O(1)\) nodes in \(T,\) while preserving the inorder traversal ordering of all the nodes in \(T.\)

In addition to its order-preserving property, a trinode restructuring changes the heights of several nodes in \(T,\) so as to restore balance. Recall that we execute the function \text{restructure}(x)\) because \(z,\) the grandparent of \(x,\) is unbalanced. Moreover, this unbalance is due to one of the children of \(x\) now having too large a height relative to the height of \(z’s\) other child. As a result of a rotation, we move up the “tall” child of \(x\) while pushing down the “short” child of \(z.\) Thus, after performing \text{restructure}(x), all the nodes in the subtree now rooted at the node we called \(b\) are balanced. (See Figure 10.10.) Thus, we restore the height-balance property \textit{locally} at the nodes \(x, y,\) and \(z.\) In addition, since after performing the new entry insertion the subtree rooted at \(b\) replaces the one formerly rooted at \(z,\) which was taller by one unit, all the ancestors of \(z\) that were formerly unbalanced become balanced. (See Figure 10.9.) (The justification of this fact is left as Exercise C-10.14.) Therefore, this one restructuring also restores the height-balance property \textit{globally.}
10.2. AVL Trees

Figure 10.10: Schematic illustration of a trinode restructuring operation (Code Fragment 10.12): (a) and (b) a single rotation; (c) and (d) a double rotation.
Removal

As was the case for the insert map operation, we begin the implementation of the erase map operation on an AVL tree T by using the algorithm for performing this operation on a regular binary search tree. The added difficulty in using this approach with an AVL tree is that it may violate the height-balance property. In particular, after removing an internal node with operation removeAboveExternal and elevating one of its children into its place, there may be an unbalanced node in T on the path from the parent w of the previously removed node to the root of T. (See Figure 10.11(a).) In fact, there can be one such unbalanced node at most. (The justification of this fact is left as Exercise C-10.13.)

Figure 10.11: Removal of the entry with key 32 from the AVL tree of Figure 10.8: (a) after removing the node storing key 32, the root becomes unbalanced; (b) a (single) rotation restores the height-balance property.

As with insertion, we use trinode restructuring to restore balance in the tree T. In particular, let z be the first unbalanced node encountered going up from w toward the root of T. Also, let y be the child of z with larger height (note that node y is the child of z that is not an ancestor of w), and let x be the child of y defined as follows: if one of the children of y is taller than the other, let x be the taller child of y; else (both children of y have the same height), let x be the child of y on the same side as y (that is, if y is a left child, let x be the left child of y, else let x be the right child of y). In any case, we then perform a restructure(x) operation, which restores the height-balance property locally, at the subtree that was formerly rooted at z and is now rooted at the node we temporarily called b. (See Figure 10.11(b).)

Unfortunately, this trinode restructuring may reduce the height of the subtree rooted at b by 1, which may cause an ancestor of b to become unbalanced. So, after rebalancing z, we continue walking up T looking for unbalanced nodes. If we find another, we perform a restructure operation to restore its balance, and continue marching up T looking for more, all the way to the root. Still, since the height of T is $O(\log n)$, where n is the number of entries, by Proposition 10.2, $O(\log n)$ trinode restructurings are sufficient to restore the height-balance property.
Figure 26: AVL Deletion example.