Skip Lists

Skip lists (due to Bill Pugh in 1990) is a randomized data structure that can be thought of as a generalization of sorted linked lists. They have most of the desirable properties of balanced binary search trees and the simplicity of linked lists. Skip lists support the standard operations for managing a dynamic data set – Insert, Delete, and Search.

In a sorted linked list with \(n \) elements, searching an element takes \(\Theta(n) \) time. What if we had two-level sorted linked lists structure as shown in the figure below? The bottom list \(L_1 \) contains all the elements and another list \(L_2 \) contains only a subset of elements of \(L_1 \).

Note that to minimize the worst case search time, the nodes in \(L_2 \) should be evenly distributed, i.e., the number of nodes in \(L_1 \) that are “skipped” between any two consecutive nodes in \(L_2 \) should be the same.

The search time in such a 2-level structure is given by

\[
|L_2| + \frac{|L_1|}{|L_2|} = |L_2| + \frac{n}{|L_2|}
\]

To minimize the search time, the two terms in the above expression must be equal. Thus solving

\[
|L_2| = \frac{n}{|L_2|}
\]

we get \(|L_2| = \sqrt{n} \) and hence the total search time is at most \(2\sqrt{n} \). Generalizing it a step further, consider a 3-level structure – list \(L_1 \) containing all the elements, list \(L_2 \) containing elements that are evenly distributed over elements in \(L_1 \), and list \(L_3 \) containing elements that are evenly distributed over elements in \(L_2 \). The search time in a 3-level structure is given by

\[
|L_3| + \frac{|L_2|}{|L_3|} + \frac{|L_1|}{|L_2|} = |L_3| + \frac{|L_2|}{|L_3|} + \frac{n}{|L_2|}
\]

The above expression is minimized when the three terms are equal. If we solve the following two equations:

\[
|L_3| = \frac{|L_2|}{|L_3|} \quad \text{and} \quad \frac{|L_2|}{|L_3|} = \frac{n}{|L_2|},
\]

we get that \(|L_3| = \sqrt[3]{n} \) and hence the search time is at most \(3\sqrt[3]{n} \). Generalizing this to a \(k \)-level structure, we get the total search time to be at most \(k\sqrt[k]{n} \). Setting \(k = \lg n \), we get the search time to be at most

\[
\lg n(n^{\frac{1}{\lg n}}) = \lg n(2^{\lg n})^{\frac{1}{\lg n}} = 2\lg n
\]
Thus, in a skip list with \(\lg n \) levels, the bottom list \(L_1 \) contains all of the \(n \) elements, \(L_2 \) contains \(n/2 \) elements (every other element of \(L_1 \)), \(L_3 \) contains \(n/4 \) elements, and so on. Note that this structure is like a perfectly balanced binary search tree. The insertion or deletion of a node could disrupt this structure, however just as in AVL trees, we do not need a perfectly balanced structure – a little imbalance still allows for fast search time. In skip lists the balancing is done using randomization – for each element in \(L_i \) we toss a fair coin to decide whether the element should also belong to \(L_{i+1} \) or not. In expectation, we would expect half the elements to also be part of \(L_{i+1} \). Note that the randomization in constructing this data structure does not arise because of any assumption on the distribution of the keys. The randomization only depends on a random number generator. Thus an adversary cannot pick a “bad” input for this data structure, i.e., a sequence of keys that will result in poor performance of this data structure.

The three operations \(\text{Search} \), \(\text{Insert} \), and \(\text{Delete} \) can be implemented as follows. Let \(\ell \) be the largest index of a linked list. We add a sentinel nodes \(-\infty\) to each list.

Search

\[
\text{Search}(x):
\]
\[
v_\ell \leftarrow \text{element with key } -\infty \text{ in } L_\ell.
\]
\[
\text{for } i \leftarrow \ell \text{ down to } 1 \text{ do}
\]
\[
\quad \text{Follow the down-link from } v_i \text{ to } v_{i-1}.
\]
\[
\quad \text{Follow the right-links starting from } v_{i-1} \text{ until the key of an element is larger than } x.
\]
\[
\quad v_{i-1} \leftarrow \text{largest element in } L_{i-1} \text{ that is at most } x.
\]
\[
\text{return } v_1
\]

The pseudo-code for the \(\text{Insert} \) operation is given below.

Insert

\[
\text{Insert}(x):
\]
\[
\text{if } \text{Search}(x) = x \text{ then}
\]
\[
\quad \text{return } (v_\ell, v_{\ell-1}, \ldots, v_1) \leftarrow \text{elements in } L_\ell, L_{\ell-1}, \ldots, L_1 \text{ with key values at most } x
\]
\[
\text{Flip a fair coin until we get tails. Let } f \text{ be the number of coin flips.}
\]
\[
\text{for } i \leftarrow 1 \text{ to } \min(\ell, f) \text{ do}
\]
\[
\quad \text{Insert } x \text{ in } L_i
\]
\[
\text{if } f > \ell \text{ then}
\]
\[
\quad \text{Create lists } L_{\ell+1}, L_{\ell+2}, \ldots, L_f.
\]
\[
\quad \text{Add elements } \{-\infty, x\} \text{ to } L_{\ell}, L_{\ell+1}, \ldots, L_f.
\]
\[
\quad \text{Create } L_{f+1} \text{ containing } -\infty.
\]
\[
\ell \leftarrow \max(\ell, f+1)
\]

The pseudo-code for the \(\text{Delete} \) operation is as follows.
Delete(x):

\[
\text{if Search}(x) \neq x \text{ then return}
\]

\[
(v_\ell, v_{\ell-1}, \ldots, v_1) \leftarrow \text{elements in } L_\ell, L_{\ell-1}, \ldots, L_1 \text{ with key values at most } x
\]

\[
\text{for } i \leftarrow 1 \text{ to } \ell \text{ do if } v_i = x \text{ then Delete } x \text{ in } L_i
\]

\[
\text{while } \ell \geq 2 \text{ and } L_{\ell-1} \text{ contains only the element } -\infty \text{ do}
\]

\[
\ell \leftarrow \ell - 1
\]

An example of a skip list on the set $\{30, 81, 10, 46, 53, 75, 99, 88, 93, 67, 18\}$ is as shown in the figure below. The search path for element with key 75 is highlighted.

\[
L_6\quad -\infty
\]

\[
L_5\quad -\infty \quad 88
\]

\[
L_4\quad -\infty \quad 53 \quad 88
\]

\[
L_3\quad -\infty \quad 30 \quad 53 \quad 88
\]

\[
L_2\quad -\infty \quad 10 \quad 30 \quad 53 \quad 81 \quad 88 \quad 99
\]

\[
L_1\quad -\infty \quad 10 \quad 18 \quad 30 \quad 46 \quad 53 \quad 67 \quad 75 \quad 81 \quad 88 \quad 93 \quad 99
\]

Analysis

In the analysis below we will show that some events happen with a high probability (w.h.p). This means that the probability with which the event occurs is at least $1 - \frac{1}{n^c}$, for some constant $c \geq 1$.

Let x_1, x_2, \ldots, x_n be the elements inserted into the skip list. Let H_i denote the number of lists that element x_i belongs to. Note that H_i is exactly equal to the total number of flips of a fair coin until the first “success”. This is a geometric random variable with parameter $1/2$ and hence $E[H_i] = 2$. Let $H = \max\{H_1, H_2, \ldots, H_n\}$.

Theorem. The space requirement for a skip list with n elements is $O(n)$ in expectation.

Proof. Let S be the random variable denoting the total amount of space required by a skip list with n elements. Taking into account the space overhead of the sentinel keys $(-\infty)$, we have

\[
S = O\left(\sum_{i=1}^{n} H_i\right)
\]

\[
E[S] = O\left(\sum_{i=1}^{n} E[H_i]\right) = O(n)
\]
Lemma 1 \(\Pr[H \geq h] \leq \frac{n}{2^{h-1}} \)

Proof We have

\[
\Pr[H \geq h] = \Pr[\bigcup_{i=1}^{n} H_i \geq h] \\
\leq \sum_{i=1}^{n} \Pr[H_i \geq h] \quad \text{(using the union-bound)} \\
= \frac{n}{2^{h-1}}
\]

Lemma 2 The expected number of levels in a skip list with \(n \) elements is at most \(\lceil \lg n \rceil + 3 \).

Proof The number of levels in a skiplist of \(n \) elements is \(H + 1 \). The second term is due to the list with the highest index that contains only the key \(-\infty\). Since \(H \) is a non-negative random variable, we have

\[
\mathbb{E}[H] = \sum_{h=1}^{\lceil \lg n \rceil} \Pr[H \geq h] \\
= \sum_{h=1}^{\lceil \lg n \rceil} \Pr[H \geq h] + \sum_{h=\lceil \lg n \rceil + 1}^{\infty} \Pr[H \geq h] \\
\leq \sum_{h=1}^{\lceil \lg n \rceil} 1 + \sum_{h=\lceil \lg n \rceil + 1}^{\infty} \frac{n}{2^{h-1}} \\
\leq \lceil \lg n \rceil + \sum_{h=\lceil \lg n \rceil + 1}^{\infty} \frac{n}{2^{h-1}} \\
= \lceil \lg n \rceil + \frac{n}{2^{\lg n + 1}} \sum_{i=0}^{\infty} \frac{1}{2^i} \\
= \lceil \lg n \rceil + 2
\]

Thus the expected number of levels is \(\mathbb{E}[H] + 1 \leq \lceil \lg n \rceil + 3 \).

Lemma 3 With a high probability, a skip list with \(n \) elements has \(O(\log n) \) levels.

Proof. We will show that w.h.p, the number of levels in a skip list with \(n \) elements is at most \(2 \lg n + 1 \). This is equivalent to showing that w.h.p, \(H \leq 2 \lg n \). From Lemma 1, we have

\[
\Pr[H \geq 2 \lg n + 1] \leq \frac{n}{2^{2 \lg n + 1 - 1}} = \frac{1}{n}
\]

Lemma 4 For any \(r \) such that \(0 < r \leq n \),

\[
\sum_{i=0}^{r} \binom{n}{i} \leq \left(\frac{ne}{r} \right)^r
\]
Proof. Rewriting the left hand side in a more convenient form we have

\[
\sum_{i=0}^{r} \binom{n}{i} = \left(\frac{n}{r}\right)^r \sum_{i=0}^{r} \binom{i}{r} \left(\frac{r}{n}\right)^i \\
\leq \left(\frac{n}{r}\right)^r \sum_{i=0}^{n} \binom{n}{i} \left(\frac{r}{n}\right)^i \\
= \left(\frac{n}{r}\right)^r \left(1 + \frac{r}{n}\right)^n \quad \text{(using the Binomial Theorem)} \\
\leq \left(\frac{n}{r}\right)^r e\left(\frac{r}{n}\right)^n \quad \text{(using } 1 + x \leq e^x, \text{ for all } x) \\
= \left(\frac{ne}{r}\right)^r
\]

Theorem. With a high probability, in a skip list of \(n\) elements, every search takes \(O(\log n)\) time.

Proof. When searching an element with key \(x\), we begin at the first element in the top list and then move down to the next lower indexed list or move right along the same list until we reach the element \(v_1\) (the element with the largest key in \(L_1\) that is at most \(x\)). We want to bound the total number of steps (“down” steps plus “right” steps) with a high probability. Instead of counting the total number of down steps plus the total number of right steps, we will start at the element \(v_1\) and trace the search path in reverse, i.e., either go “left” or go “up”. Note that we go left at key \(x_j\) in list \(L_i\) because \(x_j\) was not promoted to the next higher list \(L_{i+1}\), i.e., the ith flip of the coin must have resulted in tails when inserting \(x_j\) in the skip list. From Lemma 3, we know that w.h.p., the number of up moves are at most \(2 \log n\). We will show that the total number of up moves plus the total number of left moves (total number of coin flips) is at most \(20 \log n\) with a high probability. We consider the following events.

- \(E\): event that the total number of coin flips is \(20 \log n\) and our search has not ended.
- \(U\): event that the total number of up-moves(heads) is greater than \(2 \log n\).

We want to upper bound \(\Pr[E]\). By Lemma 3 we know that \(\Pr[U] = \Pr[H > 2 \log n] \leq 1/n\).

\[
\Pr[E] = \Pr[E \cap U] + \Pr[E \cap \overline{U}] \\
\leq \Pr[U] + \Pr[E \mid \Pr[\overline{U} \mid E] \\
\leq \frac{1}{n} + \Pr[\overline{U} \mid E] \quad (1)
\]
Let X be the random variable denoting the number of heads.

$$
\Pr[U \mid E] = \sum_{i=0}^{2\lg n} \Pr[X = i]
$$

$$
= \sum_{i=0}^{2\lg n} \left(\frac{20\lg n}{i}\right) \left(\frac{1}{2}\right)^i \left(\frac{1}{2}\right)^{20\lg n - i}
$$

$$
= \left(\frac{1}{2}\right)^{20\lg n - 2\lg n} \sum_{i=0}^{2\lg n} \left(\frac{20\lg n}{i}\right)
$$

$$
\leq \left(\frac{1}{2}\right)^{20\lg n} \left(\frac{e \cdot 20\lg n}{2\lg n}\right)^{2\lg n} \quad \text{(using Lemma 4)}
$$

$$
= \left(\frac{1}{2}\right)^{20\lg n} (10e)^{2\lg n}
$$

$$
= 2^{2\lg (10e) \cdot 2\lg n} \cdot 2^{-20\lg n}
$$

$$
= 2^{2\lg n \cdot (\lg(10e) - 10)}
$$

$$
\leq \frac{1}{2^{2\lg n}}
$$

$$
= \frac{1}{n^2}
$$

Plugging this bound in (1), we get

$$
\Pr[E] \leq \frac{1}{n} + \frac{1}{n^2} \leq \frac{1}{n} + \frac{1}{n} = \frac{2}{n}
$$