OH TODAY: 1:15pm - 2:15pm

Emails

Violation of course policies

Suffix Tries

Text T of length m.

$T \rightarrow T\$ \rightarrow abababc$\$

$S = \{\$, a\$, ba\$, aba\$, baba\$, abcba\$, baba\$, abababa\$, abababa\$\$

Diagram:

[Diagram showingSuffix Trie structure with nodes and edges labeled with characters and transitions.]
Every path from root to a leaf corresponds to a suffix of T and for every suffix of T, there is a path from the root to a leaf in the trie.

If no $ then the above property does not hold.

With $, no suffix is a prefix of another suffix.
Q. Is s a substring of T?

Starting from the root, follow the edges corresponding to each character in s. If we "fall off" the trie tree, the answer is no.

```
else
    ans = yes
```

Note: Every substring is a prefix of some suffix.

Q. Is s a suffix of T?

Do the same thing as in the previous question, checking the node you end up at has an edge with label 's' leaving it.
3) How many times appears as substring in T?

Solution: Follow edges corr. to char $a \in \Sigma$.

Let u be the node we end up at.

Count # leaves in the tree rooted at u. This is our answer.

4) Longest repeated substring of T? That is, the longest substring of T that appears \geq twice.

Solution: Deepest node in the tree that has ≥ 2 children.

nodes in a Suffix trie?
\(|T| = m \)

total # characters in all suffixes of \(T \)?

\(O(m^2) \).

Space: \(O(m^2) \).

Consider texts that take \(O(m) \) space.

\(T: \ a\ a\ a\ \ldots\ a\ \\ \underbrace{m}_{\text{\# of } a} \)

\(O(m) \).

Consider \(T: a^m b^n \)

\(a^m \overbrace{b^n}^{\text{\# of } b} \).
\[\Theta(n^2), \quad m \approx 2^n \]

\[\Rightarrow \Theta(m^2) \]

- Combine all edges that come out of nodes that have only one outgoing edge.

\[T: \quad a, b a b, a b c \]

\[\text{Ans: } 0, 2, 4 \]
nodes in the tree: $O(m)$

In our suffix tree each node has \geq
2 children. Thus \(\# \text{ int. nodes} \leq \# \text{ leaves} \).

We know \(\# \text{ leaves} = n \).

\(\Rightarrow \) Total nodes: \(\Theta(n) \).

Build a Suffix tree:

1. Create suffixes.
2. Build a Std. Trie.
3. Compress edges as necessary.

Time: \(\Theta(n^2) \) \(\checkmark \) Space: \(\Theta(n^2) \)

Time: \(\Theta(m \log m) \), Space: \(\Theta(m^2) \)

D D D D D

\(2(m^2) \) time.

Algo 2: \(\overline{abbaab} \)
Time: $O(m)$
Space: $O(m)$
\(O(m^2) \)

\[T : a^n b^n \quad \text{e.g.} \quad a^n b^n \]

Ukkonen: \(O(m) \) time, \(O(m) \) space.

Online Gusfield.

1. We have a pattern \(P \). We want to find the indices where \(P \) occurs in \(T \).

Solu:
1. Build a suffix tree using \(T \).
 Start from root.
2. If follow the edges corresponding to chains in \(P \).
3) Let u be the node when we end up.

4) Return the indices corresponding to each leaf in the subtree rooted at u.

Running time: $O(m + n)$

Subtree has to be “full”

- Every node has ≥ 2 children
- Total # nodes = $O(k)$

2) Longest Common Substring of X and Y.

$X: \text{tap}$, $Y: \text{app}$

$O(m+n)$
T: $\{tap, \#, app\}$

- Build a suffix tree using T.

- Go to each node and annotate each node as X or Y or XY.

- Go to the deepest node that is marked XY.