OT TODAY: 1:15 - 2:15 pm.

Union-Find Data Structure

Motivation: Kruskal’s algorithm. When we process an edge \((u,v)\), we want to know if \(u\) and \(v\) are in different connected components or not.

We need a data structure that maintains disjoint sets where each set represents one CC in our (partial) solution. Our data structure will support the following operations:

- \text{makeSet}(x) : Create a singleton set
containing x

Find (x) : returns the name of the set containing x

Union (x, y) : merges sets containing x & y.

Kruskal

\[
\begin{align*}
\text{for each } u \in V \text{ do } & \quad \begin{cases}
\text{make-set } (u) \\
\end{cases} \\
\mathcal{O}(n) \\
\end{align*}
\]

\[
\begin{align*}
\text{Sort edges } \mathcal{E} \text{ in order of weight } & \quad \begin{cases}
\mathcal{O}(m \lg m) \quad & \mathcal{O}(m \lg n^2) = \mathcal{O}(m \lg m) \\
\end{cases} \\
\text{for each edge } (u, v) \text{ do } & \quad \begin{cases}
\text{if } \text{Find } (u) \neq \text{Find } (v) \text{ then } \\
\text{Call find(\text{union}(u, v))} \\
\end{cases} \\
\mathcal{O}(m) \\
\end{align*}
\]
We will represent a set using "directed trees", in which all elements in the same set belong to the same tree. The root of the tree will be the representative.

Make set \(\pi(x) \)

\[
\pi(x) \leftarrow x
\]

\[
\text{rank}(x) \leftarrow 0
\]

\[
\text{First}(x)
\]

\[
\text{while } x \neq \pi(x) \text{ do}
\]

\[
\text{x} \leftarrow \pi(x)
\]
\[
\begin{align*}
&\{ \\
&\quad x \leftarrow \pi(x) \\
&\quad \text{return } \pi(x) \\
&\} \\
&\text{Find Cost } \alpha \\
&\text{hit } f \text{ the tree proportional.} \\
\end{align*}
\]

Union \((x, y) \)

\[
\begin{align*}
&\quad r_x \leftarrow \text{Find}(x) \\
&\quad r_y \leftarrow \text{Find}(y) \\
&\quad \text{if } r_x = r_y \text{ then return.} \\
&\quad \text{else if } \text{rank}(r_x) > \text{rank}(r_y) \text{ then} \\
&\quad \quad \pi(r_y) \leftarrow r_x \\
&\quad \text{else} \\
&\quad \quad \pi(r_x) \leftarrow r_y \\
&\quad \text{if } \text{rank}(r_x) = \text{rank}(r_y) \text{ then}
\end{align*}
\]
Union \((a, b)\) →
\[\text{rank}(b) = 1\]
\[\text{rank}(a) = 0\]

Find \((a)\) → \(b\)

Union \((a, c)\) →

Union \((a, e)\) →

\[\vdots\]

\[\text{rank}(d) + 1\]

\[\text{rank}(y) + 1\]
Properties.

(1) For any non-root node \(x \),
\[
\text{rank}(\pi(x)) > \text{rank}(x) .
\]

(2) For any (root) node with rank
exactly equal to \(k \), the
no. of nodes in the tree rooted
at the node \(\geq 2^k \).

Proof idea: Consider the moment
when rank of node \(x \) became \(k \).
(3) \[\text{# nodes of rank exactly } k \leq \frac{n}{2^k}. \]
\# nodes of rank exactly \(y_n \)

\[
\leq \frac{\lambda}{\frac{1}{2} \ln n} = 1
\]

\# nodes of rank \(> y_n \) = 0.

\[{}\Rightarrow\text{max rank \# any node is} \leq y_n.\]

Running time of Kruskal: \(O(m \ln n) \).

Suppose sorted edges were given to us for free. In this case, can we implement the operations more efficiently?

\(O(m) \) find operations.
$O(\log n)$ time per find. Can we do better?

Find(x)

if $x \neq \pi(x)$ then

$\pi(x) \leftarrow$ Find($\pi(x)$)

return x

Analysis (Union by rank using path compression).

Amortized analysis to find the
Cost of an find by considering a seq. of find & insert on an empty data structure.

\(\log^* n \) : \# times we apply \(\log \) to bring down the value of \(n \) down to 1 (or less).

Ex: \(\log^* 1024 \)

\[
\begin{array}{c}
2 \\
1024 \\
\log_2 1024 \rightarrow 10 \rightarrow 4 \rightarrow 2 \rightarrow 1
\end{array}
\]

We will show that the amortized
Cost of finding \(L_n^* \).

1. For any non-root node \(x \),
 \[\text{rank}(\pi(x)) > \text{rank}(x). \]

2. For any root node with rank exactly equal to \(k \), the
 no. of nodes in the tree rooted at the node \(\geq 2^k \).

3. \# nodes of rank exactly \(k \) \(\leq \frac{n}{2^k}. \)
Note that $\text{rank}(x) \neq \text{ht}(x)$.

Map rank of any node $\leq \lg n$.

A node is "frozen" once a node ceases to be a root.

Partition the rank k of all nodes as follows:

\[
\{1\}, \{2\}, \{2^1\}, \{2^1, 2\}, \{5, 6, \ldots, 2^2\},
\]

\[
\{17, 18, \ldots, 2^3\}, \{2, 3\}, \{16\}, \{2^1, \ldots, 2^4\}, \{2^2\}, \ldots,
\]

\[
\# \text{rank intervals} \leq \lg n.
\]
Find operator = $O(mn)$.
Who pays for all the find operators?

Budget: $O(my^*n) +

Pocket money: $O(nly^*n)$.

$1 = \text{one operation or one hop in find.}$

Suppose budget + pocket money pays for all the find operators then do we agree that total cost = $O(my^*n)$.

Consider an interval
\[\{ k+1, k+2, \ldots, 2^k \} \]

If a node has a rank belonging to the above interval then it gets pocket money \(\geq 2^k \).

Total # nodes whose ranks belong to the above interval are

\[
\leq \frac{N}{2^k} + \frac{N}{2^{k+2}} + \ldots
\]

\[
= \frac{N}{2^k} \left(\frac{1}{2} + \frac{1}{2^2} + \ldots \right)
\]
\[\leq \left\lfloor \frac{\sqrt{1}}{2^k} \right\rfloor \]

Total pocket money given to nodes whose ranks are in the interval \(\leq \frac{1}{2^k} \).

\[2^k = \lceil \sqrt{n} \rceil \]

Total # intervals = \(\lceil \sqrt{n} \rceil \)

\[\implies \text{Total pocket money} \leq \pi^* n \]

Big jump:

Small jump:

\[\pi(n) \text{ has rank in a higher interval.} \]
All hops are big jumps.

\[\# \text{ big jumps in one find} \leq \lg n. \]

Total \# finds = \(O(n) \)

\[\implies \text{Budget takes can fit all big jumps}. \]
$u \xrightarrow{\pi(u)} \pi(u) \xrightarrow{1} \{k+1, \ldots, 2^k\} \xrightarrow{2^k} 2^n \leq 2^n$