OH TODAY: 1:15pm - 2:15pm

Letters

AVL Trees

- Balanced Binary Search Trees
- for any internal node u, the heights of the trees rooted at u's children differ by at most 1.
- Height of an AVL tree with n nodes is $O(\log n)$.

Trinode restructurings.

Algorithm to fix the height balance properly.

Suppose we insert/delete node w.

Walk from w towards the root & let t be the first node which “complains”.

its height differs by ≥ 2.
Insert: y: taller child of z
x: "" y.

1. Let (a, b, c) be the (inorder) listing (sorted order) of the nodes x, y, z. Let T₀, T₁, T₂, T₃ be the left-to-right ordering of the four trees of x, y, z.

2. Replace z by b

3. a: left child of b & has sub-tree T₀, T₁

4. c: right "" b "" T₂, T₃
Delet
\(z \): first node that complains.

\(y \): taller child of \(z \)

\(x \): taller child of \(y \)

\(\text{if tie for } x \text{ then } x \text{ should be on the same side of } y \text{ as } y \text{ is to } z \).
Diagram 1

- **Nodes:**
 - **T₀:** 30
 - **T₁:** 50, 55
 - **T₂:** 55
 - **T₃:**

- **Edge Labels:**
 - (1) 30
 - (2) 45
 - (3) 59

- **Relationships:**
 - (1) 30 → T₀
 - (2) 45 → T₁
 - (3) 59 → T₃

Diagram 2

- **Nodes:**
 - 7
 - 2
 - 3
 - 5
 - 10
 - 11
 - 13
 - 15
 - 17
 - 18

- **Edge Labels:**
 - (1) Deletion

- **Relationships:**
 - (1) Deletion → 7

- **Path:**
 - 7 → 2 → 10 → 15 → 17 → 18
Olgen) restructurings in delete.

Linked lists

Skip lists

```
10 -> 25 -> 38 -> 50 -> 71 -> 86
```

```
L2

L1: 10 -> 25 -> 38 -> 55 -> 71 -> 86 -> 98
```
Search time: \(|L_2| + \frac{|L_1|}{|L_2|} \)

Search time is minimized when

\[
|L_2| = \left(\frac{|L_1|}{|L_2|} \right)^n = \frac{n}{|L_2|}
\]

\[\therefore \quad L_2^2 = n\]

\[L_2 = \sqrt{n}\]
Search time: \(L_3 + \frac{L_2}{L_3} + \frac{L_1}{L_2} \)

Search time is minimized when

\(L_3 = \frac{L_2}{L_3} \)
\(L_3^2 = L_2 \)

and

\(\frac{L_2}{L_3} = \frac{L_1}{L_2} = \frac{n}{L_2} \)
\(L_2 = n \cdot L_3 \)

\(L_2 = n \cdot \sqrt{L_2} \)

\(\therefore \frac{2}{2} = n \)

\(L_3 = n^{\frac{1}{3}} \)

\(L_2 = n^{\frac{2}{3}} \)
Search time: \(3. n \)

\[\vdots \]

\(k \) levels

Search time: \(O(k \cdot \sqrt{n}) \)

When \(k = \log n \):

Search time: \(O\left(\log n \cdot \frac{\log n}{\log n}\right) \)

\[= O\left(\log n \cdot \left(\frac{\log n}{\log n}\right)^{\frac{1}{2}}\right) \]

\[= O\left(\log n\right) \]

Skip list of \(\log n \) levels.
$n \mod n \in L_1$

$\frac{n}{2} \in L_2$

$\frac{n}{4} \in L_3$

\[\vdots \]

Insert x

Toss a fair coin until we get Tail.

$f := \#\text{ flips}$

Create a tower of size f from n.

Our Skip list has levels L_0, L_1, \ldots, L_e.

Search (x)

$V_e \leftarrow \text{element with key } -\infty \in L_e$.
for $i = l$ down to 1 do

Follow the downlink from v_i to v_{i-1}.

Follow the right links starting from v_{i-1} until we come to a key $> x$.

$v_{i-1} \leq$ largest element in L_{i-1} that is $\leq x$.

return v_l.

Search (66)
Input (x)

if Search$(x) = n$ then
 return

$(v_1, v_{e-1}, \ldots, v_i) \in \text{elements in } L_e, L_{e-1}, \ldots, L, \text{ that we stopped during search.}$

$f \leftarrow \#\text{flips of a fair coin until we get Tail.}$

for $i \leftarrow 1 \text{ to } \min \{f, e\}$

 Insert x into L_i

if $f > e$ then
 Create new list $L_{e+1}, L_{e+2}, \ldots, L_f$
 Add $(-\infty, -\infty)_{-\infty}$ to each list.

 Create list L_{f+1} with only $-\infty$.

 $l \leftarrow \max \{e, f+1\}.$