Today: 1:15 - 2:15pm ET

Homework 3 & 4: Write solutions soon after you solve the problems.

Counting Inversions:

Input: Array A of n distinct integers.

Output: $\# \text{ inversions in } A$.

Example

$$
\begin{array}{cccccc}
 & 1 & 2 & 3 & 4 & 5 \\
A & 18 & 9 & 4 & 11 & 12 \\
\end{array}
$$

$\# \text{ inv } = 5$.

Aryan's algorithm: Go through each pair of nouns in A.
and increment the count if the pair is inverted.

Running time: $\Theta(n^2)$

Target runtime: $\Theta(n \log n)$.

The runtime recurrence that gives us $\Theta(n \log n)$ runtime is the MergeSort recurrence

$$T(n) = 2T\left(\frac{n}{2}\right) + \text{Constant}.$$
\# inv = \# inv + 4

Sort and Count \((A[1..n])\)

\[
\text{if } n = 1 \text{ then } \\
\quad \text{return } (A, 0)
\]

\[
\text{mid } \leftarrow \left\lfloor \frac{1 + n}{2} \right\rfloor \\
\quad \text{sorted left half} \\
\quad \text{unsorted left half}
\]

\([\quad]) \quad O(1)

\([\quad]) \quad O(1)
\[(x, i_1) \leftarrow \text{Sort and Count} \ (A [1 \ldots \text{mid}]) \quad T(n/2)\]

\[(y, i_2) \leftarrow \text{Sort and Count} \ (A [\text{mid}+1 \ldots n]) \quad T(n/2)\]

\[(z, i_3) \leftarrow \text{Merge and Count} \ (x, y) \quad O(n)\]

\[\text{return} \ (z, i_1 + i_2 + i_3) \quad O(1)\]

\[T(n) = 2T(n/2) + O(n)\]

\[= \Theta(n \log n)\]

\[\text{Merge and Count} \ (x, y)\]

\[l \leftarrow 1, \ r \leftarrow 1, \ q \leftarrow 1, \ \# \text{inv} \leftarrow 0\]

\[\text{while } l \leq |x| \text{ and } r \leq |y| \text{ do}\]

\[\text{if } x[l] < y[r] \text{ then}\]

\[z[q] \leftarrow x[l]\]

\[l \leftarrow l+1, \ q \leftarrow q+1\]

\[\text{else}\]

\[\# \text{inv} \leftarrow \# \text{inv} + |x| - l + 1\]

\[z[q] \leftarrow y[r]\]
\[r \leq r+1, \quad q \leq q+1 \]

Append the non-empty array to \(Z \).

output \((Z, \text{#inv})\).

Closest Pair

Input: \(n \) points \((\text{set P})\) in a plane.
- each pt has \(x \) \& \(y \) coordinates.

Output: Closest pair \(q \) pts.

\[
\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}.
\]

\((x_1, y_1)\) \quad \rightarrow \quad (x_2, y_2)\)

Agatha's alg.

- Check every pair of pts within
dist formula.

Runaway time: $\Theta\left(n^2\right)$

Target runtime: $\Theta\left(n \log n\right)$

Target Recurrence

$$T(n) = 2T\left(\frac{n}{2}\right) + cn.$$
Lemma.

Let \(\delta \) be the distance between two points.

Given \(\delta \), we have \(\frac{\delta}{\sqrt{2}} < \delta \).

Proof:

0. Sort points \(m \) by their \(x \)-coordinates.
 Let the points be \(X \) and \(Y \).
 All the points \(m \) are in the \(x \)-cood.

1. Divide the points into two halves \(L \) and \(R \).
 Let \(P_L \) and \(P_R \) be the points in the two half-plane.
 Let \(\mathcal{L} \) be the dividing line (median) in the \(x \)-coordinate.
2. \(\delta_L \leftarrow CP(PL) \) \(T(n^{1/2}) \rightarrow \) By IH

3. \(\delta_R \leftarrow CP(PR) \) \(T(n^{1/2}) \rightarrow \) By IH

4. \(\delta \leftarrow \min \{ \delta_L, \delta_R \} \) \(O(1) \)

5. Consider the pts in the strip of width 2\(\delta \) around the line \(l \). Let \(S \) be the pts. \(O(n) \)

6. Process the pts in \(S \) in \(\uparrow \) order \(\downarrow \)

 \[
 \text{their } y \text{-coordinates. For each pt. } p \\
 \text{Compare } p \text{ with } 2 \text{ pts. after it. Update } \delta \text{ as needed. } O(n) \leq O(n + n \log n) \leq O(n^2) \]

7. Output \(\delta \) and the associated pair of pts. \(O(n) \).
$$T(n) = 2T(n/2) + n.$$

$$T(n) = 2T(n/2) + n\log n$$

$$= n\log^2 n.$$

Recurrence of CP(n) (Steps 1-7):

$$T(n) = 2T(n/2) + n = O(n\log n)$$

if $$n \leq 3$$ then
do bottom.