OH TODAY: 10pm-11pm ET.

Exam: Tue., March 02.
- Details will be posted by Tuesday next week.

Simplified Master Theorem.

Let $a \geq 1$, $b > 1$, and $k > 0$ be constants and let

$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^k)$$

defined for $n \geq 0$. The base case $T(1)$ is some constant. Then

\[
\begin{cases}
\text{Case I:} & \text{if } a > b^k \text{ then } T(n) = \Theta(n^{\log_b a}) \\
\text{Case II:} & \text{if } a = b^k \text{ then } T(n) = \Theta(n^k \log n) \\
\text{Case III:} & \text{if } a < b^k \text{ then } T(n) = \Theta(n^k)
\end{cases}
\]
Examples

(i) \(T(n) = 4 T\left(\frac{n}{2}\right) + n^1 \)

\(a = 4, \ b = 2, \ k = 1 \quad \therefore \ a > b^k \)

\(\therefore T(n) = \Theta\left(n^{\frac{\log_2 4}{2}} \right) = \Theta(n^2). \)

(ii) \(T(n) = T\left(\frac{n}{3}\right) + n \)

\(a = 1, \ b = 3, \ k = 1 \quad \therefore \text{By Con. III of the Master theorem,} \)

\(T(n) = \Theta(n). \)

(iii) \(T(n) = 9 T\left(\frac{n}{3}\right) + n^{2.5} \)

\(a = 9, \ b = 3, \ k = 2.5 \quad \therefore \ a < b^k \)

\(\therefore T(n) = \Theta(n^{2.5}). \)

Selection

Input: Array \(A \) of \(n \) distinct nos.

Objective: To find the \(i^{th} \) smallest element in \(A \).
CIS 110 way: Sort A & then find the i-th smallest element.

Running time: $O(n \log n)$.

Target running: $O(n)$.

Algorithm $(\text{Select} (A, i))$.

1. Divide A into $\left\lceil \frac{n}{5} \right\rceil$ groups of 5 elements in each group (except the last group). $\Theta(n)$.

2. Find the median element in each group.

3. Let S be the set of their medians.

4. Partition the array A around x. Let rank(x) = k.

5. If $i = k$ then return x. $\Theta(1)$
6. else if \(i < k \) then

find the \(i \)th smallest element in the left partition.

\[
\text{Select} \ (A[1 \cdots k-1], i) \quad T \left(\frac{7n}{10} + 6 \right)
\]

7. else

find the \((i-k) \)th smallest element in the right partition.

\[
\text{Select} \ (A[k+1, n], i-k) \quad T \left(\frac{7n}{10} + 6 \right) \quad \frac{1}{2} \left(\frac{n}{3} \right)
\]

\[
\# \text{elements} > x \quad \geq 3 \left(\frac{1}{2} \left(\left\lceil \frac{n}{5} \right\rceil - 2 \right) \right) = \left(\frac{3n}{10} - 6 \right)
\]

\[
\# \text{elements} < x
\]
The side that I will recurse on in Steps 6 or 7 will have

\[n - \left(\frac{3n}{10} - 6 \right) = \frac{7n}{10} + 6. \]

Runtime recurrence:

\[T(n) \leq \begin{cases} O(1), & n < n_0 = 140 \\ T\left(\left\lceil \frac{n}{5} \right\rceil \right) + T\left(\frac{7n}{10} + 6 \right) + an, & n \geq n_0 \\ \end{cases} \]

where a is some const.

Induction on \(n \). That is, we will show that for some constant \(c \), \(T(n) \leq c \cdot n \), \(\forall n \geq n_0 \).

IH: Assume that \(T(j) \leq c_j, \forall 0 \leq j < k \).

BC: \(T(j) \leq c \cdot j \), \(\forall j \leq n_0 \). (we can choose \(c \) to be sufficiently large).
\(IS: \) Want to prove that the claim when \(n = k. \)

\[
T(k+1) \leq T\left(\frac{k}{5}\right) + T\left(\frac{7k}{10} + 6\right) + a(k+1). \quad \text{let} \quad k' = k+1
\]

\[
T(k') \leq T\left(\left\lfloor \frac{k}{5} \right\rfloor\right) + T\left(\frac{7k}{10} + 6\right) + a k'
\]

\[
\leq c \left(\frac{k}{5} + 1\right) + c \left(\frac{7k}{10} + 6\right) + ak \quad \text{(By IH)}
\]

\[
= \frac{ck}{5} + c + \frac{7ck}{10} + 6c + ak
\]

\[
= \frac{9ck}{10} + 7c + ak
\]

\[
\leq ck + \left(\frac{c}{10} + 7c + ak\right)
\]

\[
\text{only if} \quad -\frac{ck}{10} + 7c + ak \leq 0.
\]

\[
\leq \frac{ck}{10}
\]

\[
ck' \leq c \left(\frac{k}{10} - 7\right) \geq ak
\]

\[
c \left(\frac{k - 70}{10}\right) \geq ak
\]
\[T(n) = T \left(\frac{95n}{100} \right) + n. \]

\[a = 1 \quad b = \frac{100}{95} \quad k = 1 \]

\[a < b^k \quad \therefore \quad T(n) = \Theta(n). \]

\[T(n) = 3T \left(\frac{n}{2} \right) + n \]

\underline{Stacks & Queues.}
Abstract Data Type (ADT)

- Data
- Operation

Operation for Stack: Push & Pop.

LIFO

Incremental Strategy:

- Everytime the array becomes full, we increment the size of the array by c.
- Initial size of the array: c

Push (obj)

// s: size of the stack. (# of elem)
// a: array size
// c: increment & initial size
\[A[s] \leftarrow \text{obj} \]

\[s \leftarrow s + 1 \]

\[\text{if } s = a \text{ then} \]

\[a \leftarrow a + c \]

Copy contents of \(A \) into the new array \(a + c \).

Sequence of operations: What is the time for

- a seq. of \(n \) operations?
- sequence of \(n \) push operations.

\[c = 2 \]

Total cost of \(n \) Push operations
\[= O(n) \times \]

\[= \text{cost to add } n \text{ elements } + \text{cost to copy } + \text{cost array allocation.} \]

\[= n + (c + 2c + 3c + \cdots + n) + \]

\[(c + 2c + 3c + \cdots + n + n + c) \]

\[\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \]

\[= n + c \left(1 + 2 + 3 + \cdots + \frac{n}{c} \right) + c \left(1 + 2 + \cdots + \frac{n}{c} + \frac{n}{c} + 1 \right) \]

\[= n + c \left(\frac{\frac{n}{c}(\frac{n}{c} + 1)}{2} \right) + c \left(\frac{\frac{n}{c} + 1}{2} \left(\frac{n}{c} + 2 \right) \right) \]

\[= \Theta \left(n^2 \right) \]