- Welcome!

- OH tomorrow (Fri): 10-11am
 - Zoom link will be available on Canvas & on Piatta

- Hws 0 and 1 will be released today.

- Course policies

Stable Matching

Input: - n people, P

 - n pets, T

 - each person in P has a ranking of all pets in T (no ties)

 - each pet in T has a ranking of all people in P (no ties)

Objective: To design an algorithm that
outputs a **stable matching**.

Matching in a graph G is a set of edges, no two of which are adjacent.

Example:

$$(t_2, t_1, t_3) \in P_1 \quad (t_1, P_2, P_3)$$

$$(t_3, t_2, t_1) \in P_2 \quad (P_2, t_1, P_3)$$

$$(t_3, t_1, t_2) \in P_3 \quad (P_1, P_2, P_3)$$

Defn: A matching M in the given instance is stable iff there is no (p, t) pair, where $p \in P$ and $t \in T$ s.t. p and t prefer each other over their existing (current) partner.

Q: Does every input have a stable matching?

Ans: Yes?
Q: Can an input have more than one stable matching?

Ans: Yes?

Alg:
1. Fix an arrangement \(I \) of all people in \(P \) (make all people stand in a row)
2. for each permutation \(f \) of the pets in \(T \) do

match the 1st pet with the 1st perm

... 2nd ... 2nd ...

... 2nd ...

\(n th \) pet \(n th \) perm.

check for any instabilities

if no instability then

\(O/P \) the matching.

3. \(O/P \) no stable matching.

\[p_1, p_2, \ldots, p_n, \]

\[t_1, t_2, \ldots, t_n \]

\(t_1 < t_2 < t_3 \ldots t_n \)

The above algorithm takes \(n! \) iterations in
the worst case. For \(n = 30 \), this alg. takes \(\geq 10^{25} \) years to finish.

\[
\begin{align*}
 p_1 &\rightarrow t_1 \\
 p_2 &\rightarrow t_2 \\
 p_3 &\rightarrow t_3 (p_5, p_3) \\
 (t_4, t_5, \ldots) &\rightarrow \min \rightarrow t_4 \\
 (t_3, t_5, \ldots) &\rightarrow 0 t_5 \\
 p_5 &\rightarrow \ldots
\end{align*}
\]

Gale-Shapley

1. Initially all people & all pets are free.
2. While there is a free person \(p \) who has not yet proposed to all pets in \(T \) do
3. \[t \leftarrow \text{highest ranked pet on p's list whom p has not yet proposed to.} \]

4. if \(t \) is free then

5. \((p,t)\) becomes a pair

6. else if \((p',t)\) exists then

7. if \(t \) prefers \(p \) over \(p' \) then

8. \((p,t)\) forms a pair

9. \(p' \) becomes free.

10. output all pairs.

Q: Can this alg. go into infinite loop?
A: No. At most \(n^2 \) iterations of the loop.

Lemma 1: Once a pet receives their first
propose they always remain "engaged" & as the algorithm progresses, their partners can only get better.

Lemma: GS alg. returns a perfect matching (matching in which every person & every pet is matched).

Proof Sketch: Assume for contradiction that the alg. has ended & there is a free person, say p.

- p must have proposed to all pets.
- all pets are paired.
- By PHP, some person must be paired with ≥ 2 pets, which we know is not possible in our alg.
Similar proof for when a partner is free.

Lemma: GS alg. ops a stable matching.

Proof: Assume for contradiction that there is an instability in the op GS alg.

Let (p, t') be the unstable pair.

\((\ldots, t', \ldots, t)\) must be t

\(p, \ldots, p', \ldots, t'\) (\(\ldots, p, \ldots, p', \ldots\))

- p must have proposed to \(t'\) before proposing to \(t\).

- \(t'\) is paired with \(p'\) who is lower.
than \(p \) on \(t \)'s preference list, contradicting Lemma 1.

Defn:

\[
\text{valid}(p) = \{ t \in T \mid \text{there is a stable matching containing } (p, t) \text{ as a pair} \}
\]

\[
\text{Best}(p) = t \iff
\begin{align*}
- & t \in \text{valid}(p) \\
- & \text{no } t' \text{ ranked higher than } t \text{ on } p \text{'s preference list belongs to } \text{valid}(p)
\end{align*}
\]

\[
(\ldots \left[t \right], \ldots) \quad \text{and} \quad x < \ldots
\]
$S^* = \{ (p, \text{Best}(p)) \}$

Then: GS alg. always outputs S^*.

Proof: Assume for contradiction that during some execution E of the alg, some people get rejected by their Best valid partners. Among these people, let t have the honor of being the first person to be rejected by their Best (p). Let $t = \text{Best}(p)$.

Why did t reject p?

p'.

Since $t \in \text{valid}(p)$, by def'., then
is a stable matching S that contains (p, t) as a pair.

\[\rightarrow p \quad \text{unmatch} \quad (\ldots, p', \ldots, p \ldots) \]

\[S : \]

\[\rightarrow p' \quad \text{unmatch} \quad t' \]

\[(\ldots, t', \ldots, t \ldots) \quad (t' \in \text{valid}(p')) \]

\[\rightarrow \quad \text{p' proposed} \quad \text{p' gets rejected} \]

\[\rightarrow \quad \text{by t'} \quad \text{by t becaun of p'} \]

This is a contradiction since p is not the first person to be rejected by their valid partner.
Define: valid(t) = \{ p \in P \mid (p, t) \text{ is a pair} \}

\text{Worst}(t) = p \text{ s.t.}
- p \in \text{valid}(t)
- no p' ranked lower than p on t's list belongs to \text{valid}(t).

Thus: In the o/p of the GS alg, each pet t is paired with worst(t).