- HW0, HW1 released.

- Recitations begin the week of Feb 1.

- If you have trouble accessing Canvas, Gradescope, OTHQ, please make a private post on Piazza.

- Enroll yourself on Piazza.

- Violation of course policies will be dealt with harshly.

- OH today 1-2 pm. (link on Piazza)

Stable Matching:

Input:
- X: set of n vertices
- Y: set of m vertices

Each vertex in X has a preferences list ranking all vertices in Y.
Each vertex in Y has a preference list ranking all vertices in X.

Stable Output: A matching in which each vertex in X is paired with exactly one vertex in Y.

\[
\begin{align*}
X & \quad Y \\
(8, 4, 1, 15, \ldots) & \quad (x, h, i, \ldots) \\
\end{align*}
\]

Permute vertices in Y. \(\pi \): permutation.

\[
\begin{align*}
a - \pi(1), & \quad b - \pi(2), \quad c - \pi(3), \ldots
\end{align*}
\]
Stable matching: matching that does not have an instability.

Q1: Does every instance have a stable matching?

Q2: Can an instance have exactly one stable matching & can an instance have >1 stable matches?

Q3: If an input has a stable matching, can we find one?
Ans to Q.2

\[(y, y') \quad \xrightarrow{\text{x}} \quad \begin{array}{c} y \quad \xrightarrow{\text{x'}} \quad (x, x') \end{array} \]

\[(y, y') \quad \xrightarrow{\text{x'}} \quad \begin{array}{c} y' \quad \xrightarrow{\text{x}} \quad (x', x) \end{array} \]

\[(y', y) \quad \xrightarrow{\text{x'}} \quad \begin{array}{c} y' \quad \xrightarrow{\text{x}} \quad (x', x) \end{array} \]

\[
\begin{array}{l}
a \quad \xrightarrow{\text{1}} \\
b \quad \xrightarrow{\text{2}} \\
c \quad \xrightarrow{\text{3}} \\
d \quad \xrightarrow{\text{4}} \\
e \quad \xrightarrow{\text{5}} \\
\end{array}
\]

3 decide whether to be with c or with e.
GS (Gale-Shapley)

- Initially all vertices are free.

- While there is a free vertex $x \in X$ s.t.
 - x has not yet proposed to all vertices in Y do

 $y \leftarrow$ highest ranked vertex in Y whom
 - x has not yet proposed to

 if y is free then

 (x, y) becomes a pair

 else if (x', y) exists then

 if y prefers x' to x then
(x, y) becomes a pair
x' becomes free

- return all pairs

Q. Will the alg. always terminate?

Yes

- each vertex in X makes \(\leq 1 \) proposal to a vertex \(y \in Y \).

- Thus \(\leq n \) proposals for \(n \)

- \(|X| = n \)

- \(\leq n^2 \) proposals, i.e., GS alg. ends after \(\leq n^2 \) iterations of the while loop.

Observation: Once a vertex \(y \in Y \) receives
their first proposal \(y \) will never be free. As the algorithm progresses, \(y \)'s partner can only get better.

At any point in the alg

Observation 2: Every vertex in \(X \cup Y \) is paired with at most one vertex.

Lemma: GS alg. outputs a perfect matching.

Proof: Assume \(\Diamond \). Let \(x \in X \) be a free vertex at the end of the GS alg. This means that \(x \) has proposal to all vertices in \(Y \). By Obs 1, all vertices in \(Y \) are
paired up. Thus \(\leq n-1 \) vertices in \(X \) are paired with \(m \) vertices in \(Y \). Hence, by \(\text{FIP} \) there must be a vertex on \(X \) paired up with two vertices in \(Y \), contradicting Obs 2.

Case 2: \(y \in Y \) is free.

Thus: G-S alg. outputs a stable matching.

Proof: Assume otherwise.

\((\ldots, y', \ldots, y, \ldots)\)

- \(x \) must have proposed to \(y' \) before it
propose to \(y \).

- Since \(x \) ends up with \(y \), it must be that \(x \) got rejected by \(y' \).

- \(y' \) rejects \(x \) because \(y \) \(x'' \). Thus \(y' \) prefers \(x'' \) over \(x \).

- \underline{Case I}: \(x' = x'' \)

 Contradicts that \(x \) is ranked higher than \(x' \).

- \underline{Case II}: \(x' \neq x'' \)

 By Obs 1, \(x' \) is ranked higher than \(x'' \) on \(y' \)'s list & hence higher than \(x \), contradicting that \(x \) is ranked higher than \(x' \).
valid(x) = \{ y ∈ Y | \exists a stable matching containing (x, y) as a pair \}

Best(x) = \arg\max_y \{ y | (x, y) \text{ is valid} \}

- y ∈ valid(x)
- ∃ y’ ∈ Y s.t. y’ is ranked higher than y on x’s list, y’ ∉ valid(x)

S* = \{(x, Best(x)) | x ∈ X\}

Theorem: Every execution of the GS alg output S*.

Proof: Assume otherwise. Let E be an execution of the alg. In which some vertices in X get rejected
by their best valid partners. Among all such vertices, let \(x \in V \) have the honor of being the first vertex to be rejected by \(\text{Best}(x) \).

Let \(y = \text{Best}(x) \).

Why did \(y \) reject \(x \)?

Because \(f \neq x' \).

By defn. \(f \) valid(.) there exits a stable matching \(S \) in which \((x, y) \) is a pair.

\((..., x', ..., x, ...)\)
\text{Valid}(y) = \{ x \in X \mid (x, y) \text{ is a pair in some stable matching} \}
\text{worst}(y) \triangleq x \iff y \\
\ x \in \text{valid}(y) \\
\exists x' \in X \text{ st. } x' \text{ is ranked below } x \text{ in the prefix list of } y, \ x' \notin \text{valid}(y).

Thus: G-S alg. always pairs winning with worst(y).