Shortest Paths

Input: Directed graph $G = (V, E)$

wt on edges (positive)

$s \in V$

Output: Shortest path tree rooted at s.

Dijkstra (G, s)

For each $u \in V$ do

D(u)

$0(1)$

$d[u] \leftarrow \infty$

$\pi[u] \leftarrow NIL$

$d[s] \leftarrow 0$

$S \leftarrow \emptyset$

while $S \neq V$

BuildHeap(S)

$O(n)$

$O(n^2) \rightarrow u \leftarrow \text{vertex in } V \setminus S \text{ with the smallest } d[u]$
\[O(n) \rightarrow S \leftarrow S \cup \{v\} \]

for each \(u \in N(v) \) s.t. \(v \in V \) \(S \) do

\[\Sigma_{u \in N(v)} d(u) = O(m) \]

if \(d(v) > d(u) + w_{uv} \) then

\[\begin{align*}
 d(v) &\leftarrow d(u) + w_{uv} \\
 \pi(v) &\leftarrow u
\end{align*} \]

Decrease key \(\Sigma_{u \in N(v)} d(u) \cdot y(u) = O(m \gamma n) \)

Running time: \(O(n^2) \).

Build a heap with the \(d[\cdot] \) values being the keys & then use ExtractMin.

New running time: \(O(n \gamma n + m \gamma n) \)

Support \(m \gg n \): \(O(m \gamma n) \).

Correctness: Induction on \(|S|\).

I H: Let \(k \geq 1 \) be an integer. Assume that
When $|S| = k$, Dijkstra compute shortest paths from \emptyset to every vertex in S correctly.

BC: $|S| = 1$. S contains \emptyset & $d[\emptyset] = 0$.

IS: Want to prove the claim when $|S| = k+1$. Let v be the $(k+1)^{th}$ vertex that is brought into S. Who buys wv? w is the parent of v.

![Diagram of a graph with vertices and edges, including labels and annotations.]

Shortest path from \emptyset to v returned by
Dijkstra = \[d[u] = d[u] + \omega_{uv}.

Assume for contradiction that Dijkstra gives a wrong answer for vertex \(v\).

Let \(P\) be a shortest path from \(s\) to \(v\). Let \(x\) be the last vertex on \(P\) before it leaves \(S\). Let \((x,y)\) belong to \(P\). We have:

\[d[u] \geq d[x] + \omega_{xy} + \omega_{Pyv}.

But then \(d[y] < d[u]\), contradicting that \(v\) is the \((\text{1st})\)th vertex to be brought into \(S\). If \(y = v\) then it contradicts line \(v\) is
brought into S, i.e., it should not be a bringing v, but a bringing v.

Fix for -ve edge costs:

Add a large value to every edge uv.
Then run Dijkstra.

Jay's claim: the above claim is bogus.

Strongly Connected Components (SCC)

Input: Directed graph $G = (V, E)$.

Output: all SCCs of G.

H is a SCC of G if:
- H is a subgraph of G.

- \(\forall u, v \in H, u \sim v \) and \(v \sim u \).
- \(H \) is maximal.

Observation:

1. By reversing the direction of each edge \(e \) in \(G \), the SCCs stay the same.

2. \(G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}}) \)

Each vertex in \(V^{\text{SCC}} \) is a SCC in \(G \).

\(e = (C, C') \in E^{\text{SCC}} \) if there is a
vertices in C that has an edge going to C'.

G^{SCC} is a DAG.

Thus G^{SCC} has a sink node.

Question: How do we find a little vertex in the sink node?

Claim: If we do DFS (G) then the vertex with the smallest $f[.]$ must belong to the sink node in G^{SCC}.

Algorithm:

1. DFS (G)
2. Return direction of all edges
2. Do DFS (4) again, but in the main loop of DFS, process vertices in \(\sqrt{\bar{f}} \) order if \(f[.] \). In other words, when deciding which vertex to chosen as the root of the next tree, pick one with the smallest \(f[.] \).

Counterexample to the claim:

\[
\begin{array}{cccc}
1/6 & 1/6 & a & b \\
2/3 & 4/5 & 2/3 & 4/5
\end{array}
\]
Can we get a handle to a vertex belonging to the source node of G_{SCC}?

Claim: The vertex with the latest finish time must belong to the source node of G_{SCC}.

Also (kosaraju)

1. $DFSC(G)$ \(\rightarrow O(n+m)\)

2. Compute G^T \(\rightarrow O(n+m)\)

3. $DFS(G^T)$, but in the main loop, process vertices in the reverse order of $f[.].$

4. Vertices of each tree make one SCC.

12/20. 18/19
You may assume that G^{sec} can be computed in $O(n+m)$ time.