Shortcut Paths

Input: Directed graph $G = (V, E)$

- wt on edges (positive)
- $\emptyset \in V$

Output: Shortest path tree rooted at \emptyset.

Dijkstra (G, \emptyset)

for each $u \in V$ do

\[d[u] \leftarrow \infty \]
\[\pi[u] \leftarrow \text{NIL} \]

\[d[\emptyset] \leftarrow 0 \]

$S \leftarrow \emptyset$

Build Heap using $d[.]$ values.

while $S \neq V$ do

\[\Theta(n^2) \]

$\emptyset \leftarrow u \leftarrow \text{vertex in } V \setminus S \text{ with the smallest } d[.]$

\[m + n + n - 2 + \ldots + 1 = \Theta(n^2) \]

ExtractMin
\(O(n^2) \) – \(S \leftarrow S \cup \{ u \} \)

\[\text{for each } v \in \text{N}(u) \text{ s.t. } v \in V \text{ s.t. } \]

\[\begin{cases} \text{if } d[v] > d[u] + w_{uv} \text{ then} \\ d[v] \leftarrow d[u] + w_{uv} \\ \pi[v] \leftarrow u \end{cases} \]

Running time: \(O(n^2) \)

New running time (using min-heap):

\[O(n \log n + m) \]

\[O(n \log n + m \log n) \]

\[m \geq n \Rightarrow O(m \log n). \]

Correctness: Induction on \(|S|\).

IH: let \(k \geq 1 \) be an integer. Assume that Dijkstra computes shortest path.
correctly for all vertices in S, when $|S| = k$.

BC: $|S| = 1$, S contains v, $d(v) = 0$.

IS: Want to prove the claim either $|S| = k + 1$.

Let v be the $(k+1)^{th}$ vertex brought into S via the edge (u,v). Then $d(v)$ is the shortest path length as computed by Dijkstra, i.e.,

$d(v) = d(u) + uv$. Assume for contradiction that this is not the right answer. Let P be the actual
This is a contradiction because if $\{y\} \subseteq T_2$ then y cannot be an element of \mathcal{F}. Furthermore, $\mu(y) > \mu_P(x)$ for all $x \in T_1$. Therefore, $\mu(y) > \mu_P(y)$, which is a contradiction. The shortest path from x to y is...
the (KPI)™ metric to be brought into.

Fix: Take the "most -ve edge" &
add a value to make everything true.
Then run Dijkstra. X

Larry: Fix is bogus!

Strongly Connected Components (SCC)

Input: Directed graph \(G = (V, E) \).

Output: All SCCs of \(G \).

\(H \) is a SCC of \(G \) i\(\iff \)

- \(H \) is a subgraph of \(G \)
- \(u, v \) in \(H \), \(u \rightarrow v \) and \(v \rightarrow u \).
Observations:
1. The SCCs remain the same when we reverse the direction of all edges.
2. $G_{SCC} = (V_{SCC}, E_{SCC})$

Each vertex in V_{SCC} corresponds to a SCC in G and an edge from C_0
C' in \(G^{\text{sc}} \) exists if there is an edge from a little vertex in C to a little vertex in C'.

Property of \(G^{\text{sc}} \): DAG.

\(G^{\text{sc}} \) must have a sink vertex.

Claim: If we do DFS \((G)\) then the vertex with the smallest \(f(i) \) belongs to the sink node in \(G^{\text{sc}} \).

Alg:
1. DFS \((G)\)
2. For each edge in \(G \)
Reversing the answer:

2. Do DFS (G), but in the main loop of DFS (i.e., while choosing a new root vertex in the DFS forest), process the vertices in order of their finishes.

3. Vertices in each tree will make SCCs.

Claim: If we do DFS (G), then the vertex that finishes last will always belong to the source vertex in G.

AE: (Kosaraju)

1. DFS (G) → O(n+m)

for each u ∈ V do
 color[u] ← white
2. for all vertices u
 if color[u] == white
 DFS(u)
2. Compute $G^T \rightarrow o(n+m)$

3. $DFS(G^T)$, but in the main loop of DFS
 process vertices in Δ order ΔH.

4. Vertices in each tree of DFS make up
 $S(t)$.
1. G^T
2. DFS (G^T)
3. DFS (G)