Randomized QuickSort continued!

Randomized QuickSort

\[\text{pivot} = \text{random} (lo, hi) \]

\[\text{swap pivot with } lo \]
Randomized Quick sort:

What is the average running time?

Running time: # comparisons between elements

- comparisons happen inside partition
- two elements are compared if one of them is the pivot
 \[A[t+t_i] \leq A[v] \quad \text{or} \quad A[v] \leq A[t+t_j] \]
- consider the \(k \)-th call to partition and compute the probability that elements \(i \) and \(j \) are compared.
 (indicator variable \(X_{ij}^k = 1 \))
If compared \(0 \) otherwise)

average of comparisons

\[E[X_{ij}] = \sum_{k} \text{prob} (X_{ij} = 1) \]

key idea is that if \(A[i,j] \) and \(A[j,i] \) are compared once then they are not compared again because one of them will be the pivot and after that partition, \(\sum_{k} X_{ij} \) is not needed.

Let’s say that the
cell to partition where the components happen is the i^{th} cell.

Pivot selected randomly

\[
\text{prob (i or j are selected)} = \frac{1}{j-i+1} + \frac{1}{j-i+1}
\]

\[
i = 0, \quad j = 9
\]

\[
E[X_{ij}] = \frac{2}{j-i+1}
\]

average total

\[
E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\]
\[\frac{h(n-1)}{2} \text{ pair of } i, j \]

\[= \frac{2}{2} + \frac{2}{3} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \ldots + \frac{2}{n-1} \]

\[+ \frac{2}{n} + \frac{2}{n-1} + \frac{2}{n-2} + \frac{2}{n-3} \]

\[= \frac{2}{2} \binom{n-2+1}{1} + \frac{2}{3} \binom{n-3+1}{1} + \frac{2}{4} \binom{n-4+1}{1} + \frac{2}{n} \binom{n-n+1}{1} \]

\[= \sum_{k=2}^{n} \frac{2}{k} (n-k+1) \]
\[
= \sum_{k=2}^{n} \left(\frac{2n}{k} - 2 + \frac{2}{k} \right)
\]
\[
= 2n \left(\sum_{k=2}^{n} \frac{1}{k} \right) - 2(n-1) + \sum_{k=2}^{n} \frac{1}{k}
\]

\[
\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}
\]

is \(\Theta(\log n)\)

harmonic sum
how can we bound this?
Assume that \(n = 2^k\)

\[
\frac{1}{2} + \frac{1}{4}
\]

\[
\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}
\]

\[
\frac{1}{2} + \frac{1}{2}
\]

\[
\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}
\]

\[
\frac{1}{2^k + \ldots + \frac{1}{2^k}} \leq \frac{1}{2^{k-1}} + \ldots + \frac{1}{2^1}
\]
\[K \left(\frac{1}{2} \right) \leq \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \leq K \cdot 1 \]

\[k \text{ was } \log n \]

\[\frac{1}{2} \log n \leq \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \leq \log n \]

\[2 \log n - 2(n-1) + 2 \log n \]

is \(\Theta(n \log n) \)

average of total

number of comparisons

expectation

\[\text{quick sort: } \min E[T(n)] \quad \text{mergesort: } \min (\omega(2T(n))) \]
Stacks and Queues are data structures (ADT: abstract data type)

Stack
- `push`
- `pop`

Queue
- `enqueue`
- `dequeue`

LIFO
- last in, first out

FIFO
- first in, first out

Diagram:

```
client
  `API` interface
    `runtime` implementation
```
this year only
linked list implementation
(no array implementation
no amortized analysis)
linked list for stack

push (str):
oldfirst = first
first = new Node()
first.content = str
first.next = oldfirst

pop():
old = first
content = first.next
return old

Θ(1)
linked list for queue

two pointers: first and last

enqueue (string)
 old last = last
 last = new Node()
 last. content = string
 last. next = null

dequeue()
 same for first

\(\Theta(1) \)
Matching parentheses

Input: \([\{[]\}] \) = \(X \)

Output: True, False

S empty stack

For \(i = 0 \ldots n-1 \)

If \(X[i] \) is opening

S. push(\(X[i] \))

Else if \(X[i] \) is closing

If \(S \). is Empty

Return False

If \(S \). pop() does \(\text{not match} \) \(X[i] \)

Return False

If \(S \). empty return true

Else return false
Computing the span of an array element
Example Solution:

```
def foo(S):
    total = S[1]
    for i in range(2, len(S)):
        total += S[i] - S[i-1]
    return total
```

Given \(X[1:n] \), define \(S[i] \) as the number of preceding elements \(X[i] \) that are less than or equal to \(X[i] \). The 'X' axis should be from 0 to 10 (Greek letter 'hi').
Keep a stack of the indices visible when you look back!

pop indices until we find an \(j \) such \(i \) larger!

we need some memory for the length of the visibility!
input X
stack A contains indices

"lexicographic" new array S

for $i = 0 \ldots n-1$
 while A not empty AND $X[A\text{.top()]} \leq X[i]$
 $A\text{.pop()}$
 if A is empty
 $S[i] = i+1$
 else
 $S[i] = i - A\text{.top()}$
 $A\text{.push}(i)$
return $S \sim$ container

$\Theta(n)$ because while never looks all the way back!