Readings

- Lecture Notes Chapter 13: Stacks & Queues
- Lecture Notes Chapter 14: Binary Heaps & Heapsort

Problems

Problem 1
Consider an indefinitely long stream of unsorted integers. We are interested in knowing the median (in sorted order) at any given time. How would we do this in an efficient manner?

Problem 2
Given: A binary tree T.
Objective: Print the level order traversal of the tree T.
Example:

Figure 1: For this tree, your function should print 1, 2, 3, 7, 6, 5, 4.

Problem 3
Given a full stack S_1 of size n and an empty stack S_2 of size n, sort the n elements in ascending order in S_2. You may only use the given 2 stacks S_1 and S_2 (each of size n) and $O(1)$ additional space. What is the
running time of your sorting procedure?

Example:

```
  4 3 1 5 2
→  1 2 3 4 5
```

Hint: Start with a simpler example:

```
  3 2 1
→  1 2 3
```

Problem 4

You are given two stacks S_1 and S_2, each of size n.

Implement a queue using S_1 and S_2. Your queue’s `enqueue` and `dequeue` methods should be implemented using only your stacks’ `push`, `pop`, and/or `peek` methods. What are the running times of your new queue’s `enqueue` and `dequeue` methods?
Problem 5

Given: A binary tree T.
Objective: Print the spiral order traversal of the tree T.
Example:

Figure 2: For this tree, your function should print 1, 2, 3, 4, 5, 6, 7.

Hint: Try using 2 stacks.