Problem 1

Run DFS on the graph above starting from q. Mark the start and finish times of each vertex and classify each edge as a forward, back, tree or cross edge. You may assume we process vertices in alphabetical order.
Problem 2
Design an algorithm to find the shortest path between nodes u and v in a connected, unweighted graph.

Solution
Since the graph is unweighted, we can just run BFS starting from u and for each node x that we visit, we just keep a pointer to its parent node (the node we visited x from). When we reach v, we stop and find the shortest path by backtracking through the pointers that we kept (i.e. we could see that v's parent was d, d's parent was c, and c's parent was u, so our path would be $u \rightarrow c \rightarrow d \rightarrow v$). We just do a BFS and backtrack no more than $O(n)$ times (the longest path in a graph is $n - 1$ edges), so this algorithm also runs in linear time.

Problem 3: Finding a Cycle in a Directed Graph
Design an algorithm to determine if a directed graph G has a cycle, and return a cycle if one exists.

Solution
We can use DFS for this question. We will run DFS from an arbitrary vertex s, while also maintaining a parent pointer array A. During our DFS traversal, if we go from a node u to a neighbor v, we will set $A[v] = u$. If we ever see a back edge (u, v), we know we have found a cycle. We can then return the cycle by creating a list L and following the parent pointers until we get back to v, at each step adding the current node to the front of the list. Once we reach vertex v, then L must contain every node in the cycle so we return it. If we never see a back edge during our DFS traversal, then there are no cycles in G so we return nothing.