Readings

- [Lecture Notes Chapter 18: DAGs and Topological Sort]
- [Lecture Notes Chapter 19: Strongly Connected Components]

Problems

Problem 1

1. (True/False) Every DAG has exactly one topological ordering.

 Solution. False. Take for example, a graph with no edges. Any ordering is valid.

2. (True/False) If a graph has a topological ordering, then a depth-first traversal of the same graph will
 not see any back edges.

 Solution. True. If we are able to topologically sort it, then it must be a DAG. That means there will
 not be any back edges.

Problem 2

Consider a graph $G = (V, E)$ ‘almost strongly connected’ if adding a single edge could make the entire graph
strongly connected. Design an algorithm to determine whether a graph is almost strongly connected.

Solution

Algorithm: First, use Kosaraju’s algorithm to create the graph of SCCs, G_{SCC}. Then topologically sort
the graph, since it is a DAG.

If the graph is ‘almost strongly connected’, then adding a single edge will connect the graph.

Add an edge from the last component to the first, and check if the graph is now strongly connected using
DFS/BFS.

Correctness. If the algorithm returns true, meaning our new graph was strongly connected, since we only
added a single edge, it follows that the original graph was almost strongly connected.

In the case that our algorithm returns false: For a graph to be almost strongly connected, every vertex
must have a path to vertex s, the source of the edge to add, and a path from t, the second vertex in the
new edge. If for contradiction it didn’t then the new graph must clearly have a vertex with no path to s,
or no path from t, as adding an edge from a vertex does not affect its reachability. t must be in the first
component in G_{SCC}, as it it wasn’t, then any vertex earlier in the topological order is clearly not reachable
from t. s must be in the last component in G_{SCC}, as if it wasn’t, then any vertex later in the topological
order clearly can not reach s.

Running time.

Steps:

1. Creating SCC kernel graph: $O(|V| + |E|)$
2. Topological sort: $O(|V| + |E|)$

3. Checking if strongly connected: $O(|V| + |E|)$

Therefore, this algorithm is $O(|V| + |E|)$.

Problem 3

1. (True/False) The finish times of all vertices in a SCC s must be greater than the finish times of other SCCs reachable from s during the first DFS.

 Solution

 False, consider the first vertex the DFS visits in s. Consider a path from that vertex within s that only has edges to other vertices in that SCC. If DFS takes this path before taking an edge out of s, the vertices on the path will finish first. Since the SCC graph is a DAG, we will never revisit s if we take an edge out. It is true though that at least one vertex must have a larger finish time than those SCCs reachable from s.

2. How does the number of SCCs of a graph change if a new edge is added?

 Solution

 Consider a new directed edge (u, v). We have two cases. Either u and v are in the same component, in which case the total number of components does not change and we are done; or u and v are in different components. Let u and v be in components C_u and C_v respectively. Consider the component graph. If $C_u \Rightarrow C_v$, then (u, v) does not change the total number of components, since it is redundant. But if instead $C_v \Rightarrow C_u$, then via (u, v) we have $C_u \Rightarrow C_v$. Thus, all components reachable with a path starting at C_u and ending at C_v (including C_u and C_v) are contracted into a single component.

3. (CLRS 22.5) Professor Bacon claims that Kosaraju’s algorithm would be simpler if it used the original (instead of the transpose) graph in the second depth-first search and scanned the vertices in order of increasing finishing times. Does this simpler algorithm always produce correct results?

 Solution

 No, consider the first connected connected component having the vertex with the smallest finish time (see first true/false). Then a DFS would start from this vertex and discover the whole graph, declaring it incorrectly as a single connected component.

Optional Challenge Problem

Problem 1 (CLRS 22.4-2). Give a linear-time algorithm that takes as input a directed acyclic graph $G = (V, E)$ and two vertices s and t, and returns the number of simple paths from s to t in G. You only need count the simple paths, not list them. (An example can be found in the textbook.)

Solution

First, we see it is a DAG, so we should immediately think of topological sort. In this case, they ask for linear time, so we know that asymptotically this is fine. We can now reason about the graph in a more reasonable way.

We make the observation that the number of paths from s to t can be counted by using intermediate nodes. For each u that has an edge $e = (u, t)$, we can count the paths to t as the sum of the number of paths to each of the u nodes. We know this because we ended up at each of those u nodes by some number of paths, then took the last edge e to get to t. Therefore, we only need to consider how we got to u.

From this observation, we can now build an algorithm.
function pathCount(G):
 Topologically sort the vertices, v_1 . . . v_n
 return pathCount(v_n, 0)

function pathCountHelper(v, accumulator):
 for incoming edge e = (u, v)
 accumulator += pathCountHelper(u, accumulator)
 return accumulator

Now we look at this algorithm and you should be able to reason that the running time is not optimal! We are doing a lot of overlapping work on the recursive call. It seems very likely that we will be rerunning the same recursive call multiple times (for all nodes that have edges from that node), so let’s try to eliminate doing that work again.

function pathCount(G):
 Topologically sort the vertices, v_1 . . . v_n
 arr = new array of size n
 arr[0] = 1
 for each i from 1 to n-1
 for each e = (v_k, v_i)
 arr[i] += arr[k]

This works going from ‘left to right’ on the topological ordering, counting up the paths based on the observation we made. Note that you can also go the other direction—can you figure that out?