A Quick Introduction to Greedy Algorithms

NOTE: This section was on last week’s guide as well; it is repeated here for your convenience.

Throughout the rest of the course, we will be discussing a fundamental paradigm called greedy algorithms. Much of these notes are adapted from CLRS Chapter 16.

Definition (Greedy Algorithms). A **greedy algorithm** obtains an optimal solution to a problem by making the choice that seems ‘the best’ at the moment. It is a heuristic strategy that does not work all of the time, yet for certain problems, it produces an optimal solution.

Greedy algorithms show up in many parts of computer science. We will see next week how we can use greedy algorithms to perform optimal data compression (Huffman’s Algorithm) and we will soon see how greedy algorithms can be used to find unique graph properties (Dijkstra’s Algorithm for shortest path and Prim’s/Kruskal’s Algorithms to find the minimum spanning tree).

Greedy-choice Property

The key ingredient to greedy algorithms is the **greedy-choice property**. This properties states that we can assemble a globally optimal solution by making locally optimal choices. This means that when we are considering a choice in our problem, we will always make the choice that is the best in our current situation without considering any future problems that we may encounter.

You can think of this as a ‘bottoms up’ approach. Greedy algorithms will solve sub problems one by one, choosing what is best at the current iteration, until it finds a globally optimal solution for the entire problem. For any greedy algorithm to be valid, we need to show that a greedy choice at each step yields a globally optimal solution. We can do this with the exchange argument.

Definition (The exchange argument). We first examine some globally optimal solution to our problem. We want to show how to modify this solution to substitute a greedy choice for some other choice in the problem that results in a similar but smaller sub problem. If we can show that the optimal solution to our problem includes our greedy choice along with the same optimal solution to a smaller subproblem, then we can ensure our greedy solution is correct.

If you want to learn more about greedy algorithms, please read CLRS Chapter 16.1 and 16.2 for a more in depth analysis.

Test Your Understanding

The Scheduling Problem

Consider a set of tasks i_1, \ldots, i_n that need to be run on a single machine. Each task has a required time it takes to run the task denoted as time t_i which must be contiguous, and a deadline time d_i which task i must be completed by. The machine can only run one task at once.

When a task is completed late, we consider the difference in completion time and its deadline to be that task’s 'lateness'. The goal of our algorithm is to pick some order to process the tasks that minimizes the maximum 'lateness' of any single task, call it L.
Graph Representations

Let $G = (V, E)$ with $|V| = n$, $|E| = m$. In other words, for some graph G, it contains n vertices and m edges.

Adjacency Matrix

One way to represent G is with an $n \times n$ matrix A where $A[i][j] = 1$ if there is an edge from vertex i to vertex j and 0 otherwise. The primary advantage of this approach is that you can check whether or not there is an edge connecting two vertices in $O(1)$ time. The disadvantage, however, is that this representation takes up $O(n^2)$ space. When n is large, this might become untenable.

Two things worth noting:

• If G is undirected, then its adjacency matrix is symmetric. That is, flipping the matrix along its main diagonal will produce the same matrix.

• Entries along the diagonal of an adjacency matrix (technically representing the presence of edges from vertices to themselves) are 0 by convention, as our graphs are simple. Non-simple graphs have self-loops, where vertices contain edges to themselves (these will not be dealt with in this course).

Adjacency List

Another way to represent G is to use an adjacency list. Each vertex u is associated to a list neighbors(v) which contains the nodes v such that $(u, v) \in E$. The advantage of this representation is that we use less space, $O(n + m)$, which is better than $O(n^2)$ of adjacency matrices as long as $m \ll n^2$. The disadvantage, though, is that checking whether $(u, v) \in E$ takes (potentially) linear time.

Graph Traversals

We now look at two ways to traverse a graph.

BFS (Breadth First Search)

In BFS, we begin at a node v (level 0) and explore the graph in “layers.” First we would explore all children of v (level 1), then the children of the nodes in level 1 (these would make up level 2), etc. The key point here is that we explore all nodes at level i before exploring any nodes at level $i + 1$. The output of BFS is called a BFS tree. We typically use a queue to implement this algorithm. For implementation details, see https://en.wikipedia.org/wiki/Breadth-first_search.

The running time of BFS is $O(n + m)$, because each vertex is added and removed from the queue once and, in the worst case, we need to traverse every edge to visit each node.

DFS (Depth First Search)

In DFS, we begin at a node v and examine its neighbors. As soon as we encounter a neighbor that hasn’t been visited, visit it. Once we arrive at a node for which all of its neighbors have been visited, we “backtrack” until we reach a node that has still unvisited neighbors (in the form of returning from recursive visit calls). We typically use a stack. There is also a recursive method to implement this algorithm. Please see both implementation methods in the link below.

The running time analysis for DFS is similar to that of BFS, giving a running time of $O(n + m)$.
Graph Traversal Questions

Problem 1. Design an algorithm to determine whether or not a graph has a cycle.

Problem 2. Design an algorithm to determine whether or not a connected graph has a cycle in $O(n)$ time.

Problem 3. Design an algorithm to find the shortest path between nodes u and v in a connected, unweighted graph.