Minimum Spanning Trees—Asynchronous

Readings

- Lecture Notes Chapter 21: Minimum Spanning Trees

Problems

Problem 1
Does Kruskal’s algorithm work on a graph with negative weights? How about Prim’s?

Problem 2
Say we have some MST, T, in a positively weighted graph G. Construct a graph G' where for any weight $w(e)$ for edge e in G, we have weights $(w(e))^2$ in G'. Does T still remain an MST in G'? Prove your answer. Now if G also had negative weights, would your answer change from the previous part? Prove your answer.

Problem 3
Imagine we have a graph G where all edge weights are equal. Design an algorithm to efficiently find an MST of G. Analyze the running time.

Problem 4
Suppose that we have found an MST T of a graph G, but soon after, we are told that an edge not in T has a lower weight than we at first thought, and as such our MST is now invalid. Is it guaranteed that we can fix our tree by removing an edge and adding a different one? If so, explain how. If not, provide a counterexample.