Readings

- Lecture Notes Chapter 23: Hashing

Problems

Problem 1
With \(n \) distinct balls in \(m \) distinct bins what is the probability that no bucket has more than 1 ball? You may assume that \(n \leq m \).

Problem 2
Assume we have a hash table \(T \) of size 10 that uses linear probing and has hash function \(h(x) = x \mod 10 \). We insert 6 numbers into \(T \) and we get the below table:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>42</td>
<td>23</td>
<td>34</td>
<td>52</td>
<td>46</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is one possible order that we could have inserted these elements to get this result? How many probes would be required for inserting 13 in the table?

Problem 3
Design an algorithm that determines if two lowercase words are anagrams of each other in expected \(O(n) \) time. Note: A string \(A \) is an anagram of another string \(B \) if \(A \) is a permutation of \(B \). Can you do it in worst case \(O(n) \) time?

Problem 4
You are given an array \(A \) containing distinct randomly assorted integers. Your goal is to find two elements in the array whose sum is \(k \) in \(O(n) \) expected time.

Problem 5
How would you detect a cycle in a linked list of distinct elements in expected \(O(n) \) time? Can you do it in constant space?