Readings

• [Lecture Notes Chapter 16: Graph Traversals: BFS & DFS]

Problems

Problem 1. Design an algorithm to find the shortest path between nodes u and v in a connected, unweighted graph.

Solution

Since the graph is unweighted, we can just run BFS starting from u and for each node x that we visit, we just keep a pointer to its parent node (the node we visited x from). When we reach v, we stop and find the shortest path by backtracking through the pointers that we kept (i.e. we could see that v's parent was d, d's parent was c, and c's parent was u, so our path would be $u \rightarrow c \rightarrow d \rightarrow v$). We just do a BFS and backtrack no more than $O(n)$ times (the longest path in a graph is $n-1$ edges), so this algorithm also runs in linear time.

Problem 2. Design an algorithm to determine whether or not an undirected graph has a cycle.

Solution

We can perform a BFS or DFS and just keep track of which elements have been seen. For example, we can run a DFS and store vertices we have seen in a set and just track whether or not any previously seen node is encountered again by checking if it is in the set. Since we are simply doing a BFS or DFS, this algorithm runs in linear time.

Problem 3. Design an algorithm to determine whether or not a *connected* graph has a cycle in $O(n)$ time.

Solution

Perform the same algorithm as problem 2. However, terminate early if you explore at least n edges. Recall that a tree has exactly $n-1$ edges. An additional edge would signify that two nodes are connected by two independent paths. Thus, there is a cycle in the graph. This algorithm will take $O(n)$ time to check each vertex and $O(n)$ to check each edge (since we are checking at most n edges). Thus, the running time is $O(n)$. Note that a graph with n edges must have a cycle regardless of whether it's connected. This example is just simple to prove with BFS.