Q1: Prove or disprove: You are given a connected undirected graph \(G = (V, E) \) with a weight function \(w \) defined over its edges. Let \(s \in V \) be an arbitrary vertex in \(G \). Starting at vertex \(s \), if you do a depth-first search (DFS) in \(G \) such that the edges going out of any vertex are always explored in increasing order of weight, then the resulting DFS tree is also a minimum spanning tree.

Solution. The assertion is false. Consider the graph \(G = (V, E) \) where \(V = \{a, b, c\} \) and \(E = \{(a, b), (b, c), (a, c)\} \). The weight function is \(w(a, b) = 1, w(a, c) = 2 \) and \(w(b, c) = 3 \). If we perform a DFS from the vertex \(a \) using the above rule, the unique DFS tree is given by the edges \(\{(a, b), (b, c)\} \), and its weight is 4. On the other hand, the MST is formed by edges \(\{(a, b), (a, c)\} \), and has a weight of 3.

Q2: Give an example of a weighted connected undirected graph \(G = (V, E) \) and a vertex \(v \) such that the minimum spanning tree of \(G \) is different than the shortest path tree rooted at \(v \). Can the two trees be completely disjoint?

Solution. They can’t be completely disjoint as the smallest edge incident on \(v \) will be the same in both trees (assuming that the smallest weight edge incident on \(v \) is unique). The two trees can be different though, as the following example shows: consider a graph \(G \) that is a cycle on \(n \) vertices \(\{v_0, v_1, v_2, ..., v_{n-1}\} \). Let the edge \(e = (v_0, v_{n-1}) \) have a weight of \(n - 2 \) and all other edges in \(\{(v_0, v_1), (v_1, v_2), ..., (v_{n-2}, v_{n-1})\} \) have a weight of 1. The shortest path rooted at \(v_0 \) will contain the edge \(e \), whereas the minimum spanning tree will not contain \(e \).

Q3: Given a directed graph with \(n \) vertices and \(m \) edges, design an \(O(mn) \) algorithm to find the length of the directed cycle with the minimum number of edges (or report that the graph is acyclic). Assume \(n \leq m \leq n^2 \).

Solution. The critical observation is that the shortest directed cycle is a shortest path (number of edges) from \(s \) to \(v \), plus a single edge \(v \rightarrow s \).

For each vertex \(s \):
- Use BFS to compute shortest path from \(s \) to each other vertex.
- For each edge \(v \rightarrow s \) entering \(s \), consider cycle formed by shortest path from \(s \) to \(v \) (if the path exists), plus the edge \(v \rightarrow s \).

Return the shortest overall cycle.

The running time is \(O(mn) \). The single-source shortest path computation from \(s \) takes \(O(m + n) \) time per \(s \) using BFS. Finding all edges entering \(s \) takes \(O(m + n) \) time by scanning all edges (though a better way is to compute the reverse graph at once and access the adjacency lists). We must do this for each vertex \(s \). Thus the overall running time is \(O(n(m + n)) \), which resolves to \(O(mn) \) since \(n \leq m \leq n^2 \).
Q4: Consider the following directed graph.

A. Run recursive depth-first search, starting at vertex A. Assume the adjacency lists are in lexicographic order, e.g. when exploring vertex E, consider E − D before E − G or E − H. Complete the list of vertices in preorder (visit-time).

Solution. A B C E D G H F I

B. Run breadth-first search, starting at vertex A. Assume the adjacency lists are in lexicographic order. Complete the list of vertices in the order in which they are enqueued.

Solution. A B D E C F G H I

Q5: Suppose you know the MST of a weighted graph $G = (V, E)$. Now, a new edge (v, w) of weight c is inserted into G to form a weighted graph G'. Design an $O(V)$ time algorithm to determine whether the MST in G is also an MST in G'. You may assume all edge weights are distinct.

Solution. Find the unique path between v and w in the MST of G. This takes $O(V)$ time using BFS or DFS because there are only $V − 1$ edges in the MST subgraph. We claim that the MST in G is the same as the MST in G' if and only if every edge on the path has length less than c (recall that we assume all edge weights are distinct).

- If any edge on the path has weight greater than c, we can decrease the weight of the MST by swapping the largest weight edge on the new path with (v, w). Hence weight of the MST for G' is strictly less than the weight of the MST for G.

- If the weight of (v, w) is larger than any edge on the path between v and w, then the cycle property asserts that (v, w) is not in the MST for G' (because it is the largest weight edge on the cycle consisting of the path from v to w plus the edge (v, w)). Thus, the MST for G is also the MST for G'.

Q6: You are given an array of n integers and a number k. Determine whether there is a pair of elements in the array that sums to exactly k. For example, given the array [1, 3, 7] and $k = 8$, the answer is “yes” since $1 + 7 = 8$, but given $k = 6$ the answer is “no”. Your algorithm should run in expected $O(n)$ time.

Solution. This is a famous problem called the two-sum problem. Here’s the optimal $O(n)$ space and expected $O(n)$ time solution (in code). On the exam, please don’t use code unless otherwise specified :)

RAW_TEXT_END
public boolean sumsToTarget(int[] arr, int k) {
 Set<Integer> values = new HashSet<>();
 for (int i = 0; i < arr.length; i++) {
 if (values.contains(k - arr[i])) {
 return true;
 }
 values.add(arr[i]);
 }
 return false;
}

Q7:
A. Suppose that the following keys are inserted in the order: A B C D E F G into an initially empty linear-probing hash table of size 7, using the following hash function:

<table>
<thead>
<tr>
<th>key</th>
<th>hash(key, 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>5</td>
</tr>
</tbody>
</table>

What is the result of the linear-probing array? Assume that the array size is fixed.

Solution.

B. Suppose we use a hash function h to hash n distinct keys into an array T of length m. Assuming simple uniform hashing and hashing with chaining, what is the expected number of collisions? Provide a short explanation.

Solution. There are $\frac{n(n-1)}{2m}$ expected collisions.

We use x_{ij} to signify the event that keys k_i and k_j hash to the same value. For each key pair (k_i, k_j), where $1 \leq i < j \leq n$, the likelihood of a collision is $P(x_{ij}) = 1/m$. There are a total of $n(n-1)/2$ possible (unordered) key pairs. So the total number of expected collisions is $\frac{n(n-1)}{2m}$.

Q8: True/False:
A. If G has a unique heaviest edge e, then e cannot be a part of any MST.
B. If G has a unique lightest edge e, then e must be a part of some MST.
C. If G has a unique lightest edge e, then e must be a part of every MST.
Solution.

A. False (e could be a cut edge)

B. True (it is the first edge added by Kruskal)

C. True: given an MST T that doesn’t contain e, we can add e to T to get a cycle, then remove the heaviest edge on that cycle. This gives a spanning tree of strictly lower weight, so T wasn’t actually an MST.

Q9: Given a DAG G and two vertices s and t, count the total number of paths from s to t.

Solution. Topologically sort the graph. Then use the following recurrence to compute the number of paths:

$$\text{Paths}(u) = \sum_{v \in \text{Adj}[u]} \text{Paths}(v)$$

where $\text{Paths}(t) = 1$. Note that by storing Paths as an array, you can implement this in $O(n + m)$ time (if you recursively re-compute $\text{Paths}(v)$ each time, the runtime could be exponential—saving the result in an array “caches” it so you only compute $\text{Paths}(v)$ once for each vertex v).

Q10: Recall the fibonacci numbers $f_1 = 1, f_2 = 1, f_k = f_{k-1} + f_{k-2}$ for $k > 2$. Suppose you are given an alphabet of size n with characters $c_1, ..., c_n$. Suppose that the frequency of c_i is f_i. What is the length of the huffman code for c_i?

Solution Draw the tree! Should be $n + 1 - i$ for $i > 1$ and $n - 1$ for $i = 1$. Note, you can prove that $\sum_{i=1}^{t} f_i < f_{t+2}$ using induction, which will rigorously show why the tree looks that way.
Some Useful Facts

These will be stapled to the back of your exam for reference (if needed).

1. $\lg n = \log_2 n$
 $\ln n = \log_e n$

2. Below are some formulas that may come handy.
 - $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
 - $(a + b)^n = \sum_{i=0}^{n} \binom{n}{i} a^i b^{n-i}$

3. Log rules:
 - $a \log_a b = b$
 - $\log ab = \log a + \log b$
 - $\log \frac{a}{b} = \log a - \log b$
 - $\log a^b = b \log a$
 - $\log_a a = 1$
 - $\log 1 = 0$

4. Expected value:
 - $E[X] = \sum x P(X = x)$
 - Linearity of Expectation: for any finite collections of random variables $X_1, X_2, ..., X_n$, $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$