CS 514: Advanced Algorithms IT — Sublinear Algorithms Rutgers: Fall 2021

Lecture 2
September 14, 2021
Instructor: Sepehr Assadi Scribe: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 Sublinear Time Algorithms for Graphs 1
1.1 Query Model for Graph Problems 1
2 Estimating Number of Connected Components 2
2.1 Proof of Correctness e 4
2.2 Runtime Analysis 5
2.3 Concluding Remarks e 5
3 Estimating Average Degree 6
3.1 Warm Up: Almost-Regular Graphs 6
3.2 General Case 7
3.3 Amplifying the Probability of Successo 10

1 Sublinear Time Algorithms for Graphs

We are going to study sublinear time algorithms in this and the next couple of lectures. In this lecture, we
will focus on sublinear time graph algorithms. Before we start, a quick notation is in order.

Notation. For any vertex G = (V, E), we use n = |V| and m = |E| to denote the number of vertices and
edges, respectively. For any vertex v € V, N(v) denote the set of neighbors of v in G and deg(v) = |N(v)] is
the degree of v. We also recall the following basic equation:) _, deg(v) = 2m (the ‘handshaking lemma’).

1.1 Query Model for Graph Problems

When designing sublinear time algorithms, specifying the exact data model, or rather the query model, is
crucial as the algorithm cannot even read the entire input once'. A query model then specifies what type
of queries can be made to the input or in other words, how one should expect to receive the input to the
algorithms (often times, we assume a query takes O(1) time).

In the context of graph problems, we typically work with one of the following models: adjacency list model,
adjacency matriz model, or the general query model. In each model, we assume that the graph G = (V, F)

1In the classical setting also specifying the input access is important; however, one can typically change different types of
access in time linear in the input size and so this does not form a barrier for classical algorithms.

has known vertices V.= {1,...,n} (so ID(v) € {1,...,n} for any v € V) but the edges are unknown. Each
model then specifies how one can access the edges of the graph.

Adjacency list query model: The following queries can be answered in O(1) time in this model:

e Degree queries: Given a vertex v € V, output deg(v), namely, the degree of v.

e Neighbor queries: Given a vertex v € V and ¢ € [n], output the i-th neighbor of v or L if i > deg(v).

By storing the graph in the adjacency list format, we can implement the above query model for algorithms.

Adjacency matrix query model: The following queries can be answered in O(1) time in this model:
e Pair queries: Given two vertices u,v € V, output whether (u,v) is an edge in G or not.

By storing the graph in the adjacency matrix format, we can implement the above query model for algorithms.

General query model for graphs: This model is simply a combination of both models above that allows
all the three queries mentioned above. This query model can be implemented by storing both the adjacency
list and the adjacency matrix of the graph separately.

Remark. The three models above are the most standard models for graph problems. However, some-
times one can consider extensions of these models, for instance, by allowing an extra edge-sample query
that returns an edge uniformly at random from the graph.

Additionally, the query models we discussed are considered local queries as they answer “local” infor-
mation about the graph (typically functions of local neighborhood of a single vertex). Researchers have
also studied global query models that answer much more global information: for instance, given a set of
vertices, return the number of edges with both endpoints in the set. We will talk about global queries
later in the course and for now only mention that power of local and global queries are vastly different;
there are various problems that can be solved much faster when one has access to these global queries.

2 Estimating Number of Connected Components

We start with one of the most classical problems in the area of sublinear time graph algorithms, namely,
estimating the number of connected components, studied first by Chazelle, Rubinfeld, and Trevisan [1], in
the earliest stages of the field of sublinear time algorithms. The problem is as follows:

Problem 1 (Estimating number of connected components). Given a graph G = (V, E) in the adja-
cency list query model, approximation parameter € € (0,1), and confidence parameter ¢ € (0,1), output an
approximate number of connected components C' such that:

Pr(|5—(§'|§5n)21—57

where C' is the actual number of connected components in G.

Remark. The reason why we settled for this additive approximation (with respect to n) as opposed to
multiplicative approximation (having |é — C| <e-C) or just aiming for the exact answer is as follows:
distinguishing whether a graph is connected or has two connected components, thus a better-than-2-
approximation, requires (n?) time (we will prove this result later in the course).

Before we get to describe the algorithm, we need a definition.

Definition 1. For any vertex v € V, we define s, as the size of the connected component of v in G,
i.e., the number of vertices (including v) that are in the same connected component as v.

The following claim reduces the task of estimating the number of connected components to computing a
simple function of s,’s for all v € V.

Claim 2. C =} .y s..

Proof. Let Dy, ..., D¢ denote the connected components of G. Note that V = Dy U...U D¢ and D;’s are
disjoint. This way, vertices of each connected component D; contribute 1/|D;| to the sum, which adds up
to 1 in the component. Hence, the total sum is C. Formally,
c c c
1 1 1 1
DX X bl g =>1=C
vev %V imiweD: OY im1veD; |Dil i=1 D; i—1

O

Our general strategy is now to calculate the sum in Claim 2 to estimate C' by sampling a small number
of vertices v and computing s,, which can be done by doing any form of graph search, say, DFS or BFS,
starting from v and counting number of visited vertices. This strategy at this point however is problematic
because when s, is very large, computing all vertices connected to v can take a long time. An important
observation is that having a “large” s, makes the contribution of v to the summation above, i.e., i, “small”

and thus almost negligible. We formalize this in the following.

Claim 3. Define s;, := min(s,,?/e) for allv € V' and C' := 3" _\, V/s,. Then, |C —C'| < (¢/2) - n.

v

Proof. First, observe that for each v € V:

This holds because s, < s,, and s, > 0, and whenever s, # s,, we have that s, = 2/e, and s, > 0. By
summing the inequality over all vertices:

1 1 5
C'-C= <.
Z sl sy 2 "
veV
1 1
C'-C= — >
> 7520
vevV ¥
concluding the proof. O

Claim 3 ensures that if instead of computing s,, we compute s/, we can still get a good estimate of C.
However, computing s, is easier now since we only need to do a graph search starting from the vertex v and
terminate the search whenever more than 2/c vertices are found.

Remark. Claim 3 gives a straightforward deterministic algorithm for this problem — simply compute
s! for every vertex which takes O(1/2?) time per vertex (see Section 2.2 for details). This gives an
O(n/e?) time deterministic algorithm which is sublinear in the size of input (which can be Q(n?)) but
not sublinear in the number of vertices. In the rest of this part, we are going to show that using
randomization, one can get a much faster algorithm for this problem.

We are now ready to present the algorithm.

Algorithm: An algorithm for Problem 1 on any given graph G = (V, E).
1. Let k :=2/e%-1In (2/9).
2. For i =1 to k do the following:

e Sample a vertex v; uniformly at random from V' (with replacement).
e For the vertex v;, compute X; —L by doing a graph search, say, DFS or BFS, from v; and

truncating the search once 2/5 vertlces are visited.

3. Output C' = n/k - Zle X;.

In order to analyze this algorithm, we use the following additive variant of Chernoff bound?.

Proposition 4 (Additive Chernoff Bound). Let Y1,Y5,..., Yy be k independent random variables with
values in [0,1] and Y = 3. Y;. Then, for any b > 1,

Pr[[Y —E[Y]| > b <2-exp <—2Z2) .

We now present the proof of correctness and runtime analysis of this algorithm.
2.1 Proof of Correctness

As in the previous lecture, we first compute the expected value of the output C , and show that it is close to
the desired answer and then bound the probability of deviation of this random variable from its expectation.

Claim 5. E {6} —C.

Proof. By linearity of expectation, we have,

k
E [C’} == Y E[X]=7 k-E[X) (as X1,..., Xy are identically distributed)

We can compute E [X;] as follows:

E[X;] = Z Pr (v is chosen as v1) - E[X; | v is chosen as v1]
veV

§\H

1
yi-te
V’U

where the second to last equality is because when we choose v in the algorithm as vy, we set X; = /s, and
the last equality is by the definition in Claim 3. The claim now follows from the above two equations. [

By Claim 5 (and Claim 3), the output is within the desired range in expectation. We now use Chernoff
bound to bound the probability that it also deviates from its expectation by much.

Claim 6. Pr (|5 — ' < (5/2) n) >1-94.

2Tt is worth mentioning that the bounds one get from multiplicative Chernoff bound is always at least as good as the additive
version — we thus only use additive Chernoff for simplifying the calculations when possible.

Proof. Define X := Zle X;. Note that this way C' = n/k - X and

by Claim 5. Moreover,

\5—0/|zg.n<:>|%x—@-mx1|z k.

’ ‘n <= | X -E[X]|>

N | ™
N | ™

Finally, X is a sum of k independent random variables X;’s which are in [0,1]. Hence, we can apply the
additive Chernoff bound in Proposition 4 with parameter b = ¢/2 - k and obtain that,

Pr(|XfIE[X]|23k) §2.exp<2'(s/2)2’k2> 2.exp(522-k)

22
=2-exp (—62 = -In (2/5)) <2-4/2=0. (by the choice of k)
This proves the desired claim. O]

By Claim 3 we know that C’ is close to C' (deterministically) and by Claim 6, we get that C is close to C”
with probability 1 —§. We can combine these two together to conclude the correctness of the algorithm.

Lemma 7. The output C of the algorithm satisfies Pr (|5 —C|<e- n) >1-4.

Proof. By Claim 6, with probability at least 1 — §, we have, |5 — C’| < (¢/2) - n. Moreover, by Claim 3, we
have |C’ — C| < (¢/2) - n (deterministically). Hence, by triangle inequality, with probability at least 1 — 4,
5

|é—c|g|5—c’|+|c'—0|gg-n+2

n=c«c-n,

finalizing the proof of correctness of the algorithm. O

2.2 Runtime Analysis

Given v;, computing s/, in the algorithm takes O(1/?) time because we are going to visit only 2/= vertices
from v; and thus DFS or BFS will time proportional to the number of these vertices plus all edges between
them which is at most O(1/<?). As such, the total runtime of the algorithm is:

1

k-O(:) = 512 ‘I (2/8)- O() = 0(€i4 -In (1/6)).

2

Remark. Notice that this algorithm runs in constant time (independent of the size of the input graph)
whenever € and d are fixed constants.

2.3 Concluding Remarks

We saw an algorithm for estimating the number of connected components to within an € -n additive approx-
imation in time O(Z; -In(1/§)). This result was first proved by Chazelle, Rubinfeld, and Trevisan in [1] who
used it as a subroutine to estimate the weight of a minimum spanning tree in a graph in sublinear time.

Open question? The algorithm we discussed does not seem to obtain optimal bounds as a function of €, 4. It
would be interesting to investigate if these bounds can be improved further and/or prove a matching lower
bound for this problem?.

3Important Note: This problem may have already been solved and a literature search is the first step.

3 Estimating Average Degree

We now switch to another classical problem defined as follows.

Problem 2 (Estimating average degree). Given a graph G = (V, E) in the adjacency list query model,
approximation parameter ¢ € (0,1), and confidence parameter § € (0,1), output an approximate average
degree d such that the following holds:

Pr(|(fivfcﬂ SewZ) >1-4,
where d is the average degree of G.

Assumption: In this problem, we are going to assume? that d > 1.

It is worth mentioning that the problem of estimating average degree is equivalent to estimating the number

of edges m in the graph (since d = 2m/n and n is given).

This problem was first studied by Feige [2] who gave a (2 + €)-approximation sublinear time algorithm using
only degree queries and proved that using only degree queries one cannot obtain a sublinear time algorithm
with better than 2-approximation. Subsequently, Goldreich and Ron [3] gave a (1 + ¢)-approximation algo-
rithm for this problem that also used neighbor queries (i.e., in the adjacency list model). A simpler proof of
this result was given by Seshadhri more recently [4]. We will follow the approach of [4] in this lecture note
albeit using a different proof.

3.1 Warm Up: Almost-Regular Graphs

As a warm up, let us consider an easy case where the graph is almost regular, namely, all vertices have
their degree in the interval [d, 10d] for some d known to the algorithm. In general, if we pick a vertex at
random and let X be the degree of this vertex, then the expected value of X is d. This is however not
enough to estimate d as X can deviate significantly from its expectation. However, in this particular case of
almost-regular graphs, we can simply repeat this process multiple times and take the average answer.

Algorithm: An algorithm for a special case of Problem 2 where all degrees are in the interval [d, 10d).

50
1. Let k = = -1In (2/6).

2. For i =1 to k do the following:

e Sample a vertex v; uniformly at random (with replacement)
o Let X; = deg(v;).

3. Output d = T Zle Xi.

The runtime of this algorithm is O(k) = O(1/¢*-1In (1/6)) since sampling and computing degree of each vertex
v; can be done in O(1) time in the adjacency list model. We now prove the correctness of the algorithm.

Claim 8. E m —d

Proof. By linearity of expectation,

k
~ 1
Eld =-- E|[X;] =E|[X; as Xq,..., Xy are identically distributed
k
i=1

4This assumption is needed to obtain a sublinear time algorithm with multiplicative approximation — consider distinguishing
a graph with no edges from a one with only a single edge.

as desired. 0

By Claim 8, d in expectation is d (which is what we want). We now need to show that d does not deviate
from its expectation by much.

Claim 9. Pr(|d—d| <e-d)>1—9.

Proof. Note that d is a sum of independent random variables X1, ..., Xx; however, we cannot readily apply
X
Chernoff bound since X;’s are not in [0,1]. Instead, we define Z; := 104 and Z := Zle Z;, and thus
~ 10d ko -
d = —— - Z. Hence, by Claim 8, E[Z] = — - d. Note that,
k 10d
~ - . 10d 10d - k -
—d|>e- —Z—-—"E[Z]| >¢- Z—-E[Z]| > — -¢-d.
|d d|_sd<:>\k ’ [Z]| > e-d < | []|_10dad
Z is a sum of independent random variables in [0, 1] (since deg(v) < 10-d for all v € V by our simplifying
assumption in the warm up). We apply the Chernoff bound in Proposition 4 with parameter b = Tod £-d,
and have that,
k - 2 k2.2 d?
Pr(|Z-E|Z]|> —-e-d| <2- -
r(' 21l 2 155 ¢) exP(100-d2-k>
k-e? s o :
<2-exp|— 50 (since d > d by the simplifying assumption)
(50/¢2) - In (2/6) - &2 50
=2-exp <— 20 = 0. (ask:€—2~ln(2/(5))
The above two equations conclude the proof. O

This gives a simple algorithm for the case of almost-regular graphs that takes only O(1/e%-1n(1/4)) time.

3.2 General Case

We now switch to the general case of the problem. What made our algorithm and analysis really easy in the
case of almost-regular graphs was that no vertex could contribute significantly to the value of d as degrees of
all vertices were close to each other. In the general case however, we need to take care of vertices that have
much higher degree than the remaining ones; if you repeat the above algorithm in this case, the best bound
that follows is O(n/e?-In(1/6)) (as in any graph the degrees are within at most factor n of each other). But
this is completely trivial as in O(n) time we can simply query degree of all vertices!

In the following, we are going to use the fact that a graph with m edges cannot have “too many” vertices with
“too large” degree, and use this to reduce the “noise” introduced by high degree vertices. For this purpose,
we will assign the edges to their lower-degree endpoint (breaking the ties arbitrarily but consistently) and
show how to use this to reduce the variance of our estimator. We first need some definition.

Definition 10. We define a total ordering < on wvertices of G = (V, E) where for any pairs of distinct
vertices u #v € V, u < v if and only if either:

(7) deg(u) < deg(v), or

(77) deg(u) = deg(v) and ID(u) < ID(v) (for consistent tie breaking).

Moreover, for any u € V, we define deg™ (u) as the number of neighbors v of u where u < v.

Notice that

Zdeg+(v) =m= g -d, (1)
veV

as each edge is only counted once toward deg™ (+) (as opposed to twice in deg(+)). We will design an algorithm
that estimate d through estimating deg™ (-) of vertices instead of deg(-). This may sound counter-intuitive at
first glance: the adjacency list query model allows us to query deg(v) for each vertex v € V' in O(1) time but
does not provide such a guarantee for deg™ (v), and yet, we want to switch from easier-to-compute degrees
deg(-) to deg™ () instead! The following lemma (partially) addresses this: unlike deg(v) that can be as large
as m or n (and thus leading to a large “noise” in our estimation), deg™ (v) is bounded by O(y/m). Formally,

Lemma 11. For any vertex v € V, deg™ (v) < v/2m.

Proof. Define H C V as the set of first v/2m vertices with largest rank according to the ordering < (these
are the highest degree vertices of G).

Firstly, for any v € H, we have deg™ (v) < |H| = v/2m as deg™ (v) counts the neighbors of v with rank higher
than v; these vertices can only be in H for every v that is in H itself.

Secondly, we claim that for any v € V \ H, we also have deg™ (v) < v/2m. In fact, we prove this for deg(v)
itself, i.e., we claim that deg(v) < v/2m (which is definitely enough for us as deg™ (v) < deg(v)). Suppose by
contradiction that this is not true and so there is a vertex v € V' \ H such that deg(v) > v/2m. This implies
that all vertices in H have degree at least v/2m since degrees of every vertex in H is at least as large as any
vertex in L. But then we have,

Zdeg(v)>|H\~\/%:\/%-\/%:2m;

veEH

this means that sum of degrees of vertices in H is already more than 2m which is a contradiction (sum of
degrees of all vertices is precisely 2m). This concludes the proof. O

We are now going to implement our strategy of estimating sum of deg™(-) of vertices as opposed to their
deg(-). This is done by using neighbor queries in addition to degree queries. The algorithm is as follows.

Algorithm: An algorithm for Problem 2.

16

2. For i =1 to k do the following:

e Sample a vertex v; uniformly at random from the graph.
e Sample a vertex u; € N(v) uniformly at random from the neighbors of v.
o If v; < u; then X; =2 - deg(v;) else X; = 0.

3. return d = T Zle X;.

To emphasize the intuition behind the algorithm again, we are sampling an edge (u;,v;) from the graph G,
although not uniformly at random, and count this edge only if it is counted toward deg™ (v;) (and scale the
random variable by 2 - deg(v;)), and otherwise ignore this edge.

We now formalize this intuition.

Remark. The proof of this result follows a general framework. Design a random variable X (think of
each X; in the above) where E [X] is equal to the desired output and Var [X] is not “too high”. Then
repeat this process independently sufficiently many times (based on the bound on the variance) to get
random variables X1, ..., X; and return Y = average of these random variables as the answer. This
averaging step keeps the expected value of Y the same as expected value of X and hence the same as
the desired answer but reduces the variance of Y (compared to X) by a factor of k. As such, we can
now apply Chebyshev’s inequality and bound the probability of deviation of Y from its expectation (we
need to pick the number of random variables, i.e., k, large enough to adjust the probability bound we
get from the Chebyshev’s inequality).

We follow the approach outlined in the remark above. Recall that X;’s are identically distributed so we can
simply focus on X;. We bound expectation and variance of X in the following.

Claim 12. E[X;] =d.

Proof. We have,
E[X] = Z Pr (v is sampled from V') - E [X; | v is sampled from V]
veV

1
= E — -E[X; | v is sampled from V] (choice of each vertex is uniform)
n
veV

1
=— Z Z Pr (u is sampled in N(v) | v is sampled) E [X; | u is sampled in N(v) and v is sampled]
n veV ueN (v)

1
=— E E - 2deg(v) (X7 = 2deg(v) whenever v < u and otherwise is zero)
n deg(v)
veV ueN (v)Av<u
1 2 _
=— E 2-deg™(v) = il d, (by definition, deg™ (v) counts u € N(v) with v <)
n n

veV

where we used the fact that > ., deg™ (v) = m as every edge is counted exactly once (by its lower rank
endpoint) in this sum. O
We now use Lemma 11 to bound the variance of X;.

Claim 13. Var [X;] < 4v2m -d.

Proof. By definition of variance, we have,
Var[X] =E [X?] ~E[X]* <E [X?]
1 1
=— (2 2
~> D doa(o) ~ (24es(®))

veEV ueN (v)Av<u
(exactly the same as expectation in Claim 12 by considering X2 = (2 deg(v))? instead)

= 23" deg™ (1) - deg(v) (by definition of deg” (v))
n veV
< @ . Z deg(v) (by Lemma 11, deg™ (v) < v/2m)
n
veV

= 4V2m - d. (as D,y deg(v) = 2m)
O

We can now finalize the proof of correctness of the algorithm. For that, we need the following simple result
about variance (alluded to already in the remark about the general approach). It states that averaging k
independent and identical random variables reduces the variance by a factor of k.

1
Proposition 14. LetY = E-Eﬁ;l X; be an average of k independent copies of a random variable X. Then,
1
Var [Y] = P - Var [X].
Proof. We have,

Var [Y] = Var

1 1
kZXZ] :ﬁ~Var
i=1

k
1
== > Var[X]
1=1

k
Z Xi] (Var[c- X]| = c¢%- X for any scalar c)

=1

(Var [A + B] = Var [A] + Var [B] for independent random variables A, B; see Lecture 1)

1 1
—ﬁ-k-Var[X]—E-Var[X].

We can now finalize the proof of correctness of the algorithm.

Lemma 15. For the output d of the algorithm, Pr (|c’lvf d <e- CZ) > 3/4.

Proof. By Claim 12 and linearity of expectation E [ﬂ = d. By Claim 13 and Proposition 14, we further
have Var {cﬂ < @ -d. By Chebyshev’s inequality (see Lecture 1),

Pr(|J—J|25-J):Pr(\J—E[Cﬂ|ZE~J)

Var |d
<
<4\/%~J
T k-g2.d?2
442m-n 4-n _/n
Ck-e2-2m k-e2.2m 4-2m
1

< T (by the assumption that d = 2m/n > 1)

(Chebyshev’s inequality)

(by the choice of k = 15 - \/n)

O

Lemma 15 implies that the algorithm above gives a (1 £ ¢)-approximation to the average degree in O(E—\/f)
time with probability at least 3/4.

3.3 Amplifying the Probability of Success

So far, we obtained an algorithm for solving Problem 2 with constant probability (specifically 3/4) in O(g)

time. However, recall that our goal was to have a confidence probability of 1 — §. One ad-hoc way of fixing
this is to change the choice of k£ in the algorithm to k& = ;—S‘ /- %, namely increase it by a factor of 1/s.
The proof then follows by a very basic modification of Lemma 15.

10

Nevertheless, this approach, beside being rather naive and ad-hoc, will also result in increasing the time
complexity of the algorithm by O(1/5) which is not desirable. Instead, we are going to suggest a general
approach that is applicable to almost every problem in a black-box way (and in many other algorithmic
problems beside sublinear algorithms). This is often times referred to as the median trick.

Median Trick. Consider the algorithm discussed in the previous section. In order to boost or amplify its
probability of success, we do the following;:

(¢) Run the algorithm independently for ¢ = 81n(1/9) times and record the answer of i-th time as Y;;

(79) Return the median of Y;’s as the final answer.

Lemma 16. The output d of the new algorithm satisfies Pr (‘j, d <e- J) >1-9.

Proof. For d, the median answer of X;’s, to be out of the desired range |(I— d| < e -d, one of the following
events should happen:

e Event 1: At least half the X;’s are smaller than (1 —¢) - d;

e Event 2: At least half the X;’s are larger than (1+¢) - d.

Define the indicator random variable Z; € {0,1} where Z; = 1 ifand only if Y; < (1—¢)-dor Y; > (1 +¢)-d
and define Z = Y°!_, Z;. By Lemma 15, E[Z;] < 1/1 and thus E [Z] < t/a. Since Z is a sum of independent
random variables in [0, 1], by Chernoff bound in Proposition 4 (with b= %),

t2

16 -t

Pr (Event 1 or Event 2) < Pr (Z > ;) <Pr (Z -E[Z]]| > fl) < exp (—) =exp(—1In(2/6)) =9,

which concludes the proof. O

Using the approach above, we can solve the degree estimation problem in O(E—‘/QE -1In (1/6)) with probability
1 — ¢ for any arbitrary § > 0.

Remark. It is worth emphasizing that the median trick completely treated the algorithm (and analysis)
of the main subroutine from the previous section in a black-box way. One can use this technique to
boost the probability of success of any algorithm (in many different settings) — this is indeed the reason
that for most algorithms, the dependence of resources on ¢ is almost always O(In (1/9)).

References

[1] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight in sub-
linear time. SIAM J. Comput., 34(6):1370-1379, 2005. 2, 5

[2] U. Feige. On sums of independent random variables with unbounded variance and estimating the average
degree in a graph. SIAM J. Comput., 35(4):964-984, 2006. 6

[3] O. Goldreich and D. Ron. Approximating average parameters of graphs. Random Struct. Algorithms,
32(4):473-493, 2008. 6

[4] C. Seshadhri. A simpler sublinear algorithm for approximating the triangle count. CoRR, abs/1505.01927,
2015. 6

11

	1 Sublinear Time Algorithms for Graphs
	1.1 Query Model for Graph Problems

	2 Estimating Number of Connected Components
	2.1 Proof of Correctness
	2.2 Runtime Analysis
	2.3 Concluding Remarks

	3 Estimating Average Degree
	3.1 Warm Up: Almost-Regular Graphs
	3.2 General Case
	3.3 Amplifying the Probability of Success

