Mathematical Foundations of Computer Science
Practice Problems for Exam 2
November 10, 2018

P1: Let $a_0 = 1$. Suppose $a_{n+1} = 2 \cdot \sum_{i=0}^{n} a_i$. Find an explicit formula for a_n and prove your claim by strong induction. (Here, explicit means that you can compute a_n knowing just the value of n and nothing else.)

P2: I dip a $3 \times 3 \times 3$ cube into paint so its entire surface is coated. I then disassemble the cube into 27 cubelets (of size $1 \times 1 \times 1$), take one randomly, and place it in front of you on a table. From the five sides you can observe of the cubelet, no side is painted. What is the probability that the bottom side (that you cannot observe) is painted?

P3: Let G be a connected graph where all vertices are of even degree. Prove that G has no cut edges. A cut edge is an edge, that if removed, would increase the number of connected components of the graph.

P4: Let $T = (V, E)$ be a tree with $n \geq 2$ vertices. Prove that for any vertex $u \in V$,

$$\sum_{v \in V} d(u, v) \leq \binom{n}{2}$$

P5: A CIS160 angel tells you in a dream that every connected graph has a connected subgraph that is a tree, which retains all the vertices of the original graph (called a spanning tree). The angel also tells you a procedure that allows you to find that exact subgraph given any connected graph, G. The following is a procedure: We will keep adding edges to a subgraph H of G so that at the end H is a spanning tree of G. Initially H has no edges and $V(H) := V(G)$. While H has more than 1 component, find an edge in G that has endpoints in two different components of H and add it to H. Prove the following properties:

A. If H has more than 1 component, there is some edge in G whose endpoints lie in different components of H.

B. At all times H is an acyclic graph.

C. When this procedure terminates, H will be a spanning tree of G.