Example. Prove that the sum of the first n positive odd numbers is n^2.

Solution. We want to prove that \forall positive integers n, $P(n)$ where $P(n)$ is the following property.

$$\sum_{i=0}^{n-1} 2i + 1 = n^2$$

Base Case: We want to show that $P(1)$ is true. This is clearly true as

$$\sum_{i=0}^{0} 2i + 1 = 1 = 1^2$$

Induction Hypothesis: Assume $P(k)$ is true for some $k \geq 1$.

Induction Step: We want to show that $P(k+1)$ is true, i.e., we want to show that

$$\sum_{i=0}^{k} 2i + 1 = (k+1)^2$$

We can do this as follows.

$$\sum_{i=0}^{k} 2i + 1 = \sum_{i=0}^{k-1} 2i + 1 + 2k + 1$$

$$= k^2 + 2k + 1 \quad \text{(using induction hypothesis)}$$

$$= (k + 1)^2$$

Example. Show that for all integers $n \geq 0$, if $r \neq 1$,

$$\sum_{i=0}^{n} ar^i = \frac{a(r^{n+1} - 1)}{r - 1}$$
Solution. Let r be any real number that is not equal to 1. We want to prove that \forall integers n, $P(n)$, where $P(n)$ is given by

$$\sum_{i=0}^{n} ar^i = \frac{a(r^{n+1} - 1)}{r - 1}$$

Base Case: We want to show that $P(0)$ is true.

$$\sum_{i=0}^{0} ar^i = a = \frac{a(r - 1)}{r - 1}$$

Induction Hypothesis: Assume that $P(k)$ is true for some $k \geq 0$.

Induction Step: We want to show that $P(k + 1)$ is true, i.e., we want to prove that

$$\sum_{i=0}^{k+1} ar^i = \frac{a(r^{k+2} - 1)}{r - 1}$$

We can do this as follows.

L.H.S. $= \sum_{i=0}^{k+1} ar^i$

$= \sum_{i=0}^{k} ar^i + ar^{k+1}$

$= \frac{ar^{k+1} - a}{r - 1} + ar^{k+1}$

$= \frac{a(r^{k+1} - 1)}{r - 1} + \frac{ar^{k+1}(r - 1)}{r - 1}$

$= \frac{a}{r - 1} (r^{k+1}(1 + r - 1) - 1)$

$= \frac{a}{r - 1} (r^{k+2} - 1)$

$= \frac{a(r^{k+2} - 1)}{r - 1}$

Example. Prove that \forall non-negative integers n,

$$\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$

Solution. By setting $a = 1$, $r = 2$ in the result of the previous problem, the claim follows.
Example. Prove that \forall non-negative integers n, $2^{2n} - 1$ is a multiple of 3.

Solution. We want to prove that \forall non-negative integers n, $P(n)$, where $P(n)$ is

$$2^{2n} - 1 = 3k,$$

for some non-negative integer k

Base Step: $P(0)$ is true as shown below.

$$2^0 - 1 = 0 = 3 \cdot 0.$$

Induction Hypothesis: Assume that $P(x)$ is true for some $x \geq 0$, i.e., $2^{2x} - 1 = 3 \cdot k'$, for some $k' \geq 0$.

Induction Step: We want to prove that $P(x + 1)$ is true, i.e., we want to show that

$$2^{2(x+1)} - 1 = 3l,$$

for some non-negative integer l.

We can show this as follows.

\[
\text{L.H.S.} \quad = \quad 2^{2(x+1)} - 1 \\
\quad = \quad 2^{2x+2} - 1 \\
\quad = \quad 2^{2x} \cdot 2^2 - 1 \\
\quad = \quad 2^{2x} \cdot 4 - 1 \\
\quad = \quad 2^{2x} \cdot (3 + 1) - 1 \\
\quad = \quad 3 \cdot 2^{2x} + 2^{2x} - 1 \\
\quad = \quad 3 \cdot 2^{2x} + 3 \cdot k' \quad \text{(using induction hypothesis)} \\
\quad = \quad 3(2^{2x} + k') \\
\quad = \quad 3l, \quad \text{where } l = 2^{2x} + k'
\]

Since x and k' are integers l is also an integer. Hence, $P(x + 1)$ is true.

Example. Prove that $\forall n \in \mathbb{N}, n > 1 \rightarrow n! < n^n$.

Solution. Below is a simple direct proof for this inequality.

$$n! = 1 \times 2 \times 3 \times \cdots \times n$$

$$< n \times n \times n \times \cdots \times n$$

$$= n^n$$

We now give a proof using induction. Let $P(n)$ denote the following property.

$$n! < n^n$$

Induction Hypothesis: Assume that $P(k)$ is true for some $k > 1$.

Base Case: We want to prove $P(2)$. $P(2)$ is the proposition that $2! < 2^2$, or $2 < 4$, which
We want to prove that the claim is true when \(n \).

Induction Hypothesis: We will prove the claim using induction on \(n \).

Base Case: \(n = 1 \). When \(S = \{x_1, x_2, \ldots, x_n\} \), we want to show that if \(S \) does not contain \(x_{k+1} \), and \(S_2 \subset S \) contains subsets of \(S \) that contains \(x_{k+1} \). Thus we have

\[
|\mathcal{P}(S)| = |S_1| + |S_2|
\]

(1)

Note that \(S_1 \) contains all subsets of \(\mathcal{P}(S') \). By the induction hypothesis, we have \(|S_1| = |\mathcal{P}(S')| = 2^k \). We will now compute \(|S_2| \). Observe that each set in \(S_2 \) is of the form \(\{x_{k+1}\} \cup X \), where \(X \) is a subset of \(S' \). By induction hypothesis, we know that there are \(2^k \) subsets of \(S' \) and hence \(|S_2| = 2^k \). Plugging in the values for \(|S_1| \) and \(|S_2| \) in (1), we get

\[
|\mathcal{P}(S)| = 2^k + 2^k = 2^{k+1}
\]

Example Let \(A_1, A_2, \ldots, A_n \) be sets (where \(n \geq 2 \)). Suppose for any two sets \(A_i \) and \(A_j \) either \(A_i \subseteq A_j \) or \(A_j \subseteq A_i \). Prove by induction that one of these \(n \) sets is a subset of all of them.

Solution. We will prove the claim using induction on \(n \).

Induction Hypothesis: Assume that the claim is true when \(n = k \), for some \(k \geq 2 \). In other words, assume that if we have sets \(A_1, A_2, \ldots, A_k \), where for any two sets \(A_i \) and \(A_j \), either \(A_i \subseteq A_j \) or \(A_j \subseteq A_i \), then one of the \(k \) sets is a subset of all of the \(k \) sets.

Base Case: \(n = 2 \). We have two sets \(A_1, A_2 \) and we know that \(A_1 \subseteq A_2 \) or \(A_2 \subseteq A_1 \). Without loss of generality assume that \(A_1 \subseteq A_2 \). Then \(A_1 \) is a subset of \(A_1 \) and is also a
subset of A_2, so the claim holds when $n = 2$.

Induction Step: We want to prove the claim when $n = k + 1$. That is, we are given a set $S = \{A_1, A_2, \ldots, A_{k+1}\}$ of with the property that for every pair of sets $A_i \in S$ and $A_j \in S$, either $A_i \subseteq A_j$ or $A_j \subseteq A_i$. We want to show that there is a set in S that is a subset of all $k+1$ sets in S. Let $S' = S \setminus \{A_{k+1}\}$. By induction hypothesis, there is a set $A_p \in S'$ that is a subset of all sets in S'. We now consider the following two cases.

Case 1: $A_p \subseteq A_{k+1}$. Then it follows that A_p is a subset of all sets in S.

Case 2: $A_{k+1} \subseteq A_p$. Since A_p is a subset of all sets in S' and $A_{k+1} \subseteq A_p$, it follows that A_{k+1} is a subset of all sets in S.

Example. For all $n \geq 1$, prove that n lines separate the plane into $(n^2 + n + 2)/2$ regions. Assume that no two of these lines are parallel and no three pass through a common point.

Solution. Let $P(n)$ be the property that n lines, such that no two of them are parallel and no three of them pass through a common point, separate the plane into $(n^2 + n + 2)/2$ regions. We will prove the claim by induction on n.

Induction Hypothesis: Assume that $P(k)$ is true for some $k > 0$.

Base Case: $P(1)$ is true since one line divides the plane into 2 regions which is also given by $(1^2 + 1 + 2)/2$.

Induction Step: To prove that $P(k + 1)$ is true. Consider a set S of $k + 1$ lines such that no two of them are parallel and no three of them pass through a common point. Remove any line ℓ from the set S. Let S' be the resulting set of k lines. By induction hypothesis, the k lines in S' divide the plane into $(k^2 + k + 2)/2$ regions. Now we add the line ℓ to the set S' to obtain the set S. Line ℓ intersects exactly once with each of the k lines in S'. These intersections divide the line ℓ into $k + 1$ line segments. Each of these line segments passes through a region and hence $k + 1$ additional regions are created. Hence, the total number of regions formed by $k + 1$ lines is given by

\[
\frac{k^2 + k + 2}{2} + k + 1 = \frac{k^2 + 3k + 4}{2} = \frac{k^2 + 2k + 1 + k + 3}{2} = \frac{(k + 1)^2 + (k + 1) + 2}{2}
\]

Thus $P(k + 1)$ is correct and this completes the proof.