- Office hours
 - 1-2pm ET TODAY

- Meeting with CIS160 alumni
 - 10pm - 11pm ET TODAY (no recording)

Counting.

Goal: Find the cardinality of some set.

- Combinatorics
- Ways to arrange objects satisfying some constraints.

In other words, we are interested in finding the cardinality of a set.

Set: unordered collection of objects.

\[S = \{ 'a', 1, \text{red}, 45 \} \]

Cardinality of a set \(S \) denoted by \(|S| \)
is the # elements in S.

$|S| = 4$

Two sets are equal \(\iff \) they have the same cardinality.

\[A = \{1, 2\}, \quad B = \{a, b\} \]

If two sets are equal then they have the same cardinality.

Two sets are equal \(\iff \) they have exactly the same elements.

\[A = \{1, 2, a'\}, \quad B = \{a', 2, 1\} \]

\[A = B \]

Element 2 belongs to

Element 2 \in A.
A set A is a **subset** of set B if every element in A is an element of B.

Clearly, $\forall x \in A$, $A \subseteq A$.

Empty set \emptyset, $\{\}$, is a subset of every set:

$\forall \text{ set } S$, $\emptyset \subseteq S$.

$A = \{\emptyset\}$, $A' = \{\}$

$A = A'$. $|A| = 1$, $|A'| = 0$

Subset: $\forall x \in A$ if $x \in A$ then $x \in B$.

$A = \{1\}$, $B = \{1, 2\}$.
A is a proper subset of B if A ⊂ B and A ≠ B.

Powerset: Powerset \(P(S) \) of a set \(S \)

in the set of all subsets of \(S \).

\(S = \{1, 2, 3\} \)

\(P(S) = \{\{1\}, \{1, 2\}, \{2\}, \{3\}\} \)

\(|S| = 3, \quad |P(S)| = 8. \)

\(|S| = n, \quad |P(S)| = 2^n. \)

Set of integers: \(\mathbb{Z} \)

Positive \(\mathbb{Z}^+ \)
\textbf{real} : \mathbb{R}

\textbf{rational} : \mathbb{Q}

\textbf{natural} : \mathbb{N}

\textbf{set} of all positive even integers \leq 100.
\{2, 4, 6, \ldots, 100\}

\{ x \mid x \in \mathbb{Z}^+ \text{ and } x = 2k, \text{ for some } k \text{ and } 1 \leq x \leq 100 \}

\{ x \mid x = 2k, k \in \mathbb{Z}, 1 \leq k \leq 50 \}

\underline{Theorem}: If \(m \) & \(n \) are integers and \(m \leq n \) then there are \(n-m+1 \) integers from \(m \) to \(n \), inclusive.
Ex: # 3-digit int b/w 100-999 that ar
divisible by 5? 1000

$$\begin{align*}
8th: \quad \frac{900}{5} &= 180 \\
100 & \quad 105 & \quad 110 & \quad \ldots \quad 995 \\
5.20 & \quad 5.21 & \quad 5.22 & \quad 5.199 \\
199 - 20 + 1 &= 180.
\end{align*}$$

Ex: Two teams A, B

- Best of 3 match
- One team wins 2 games.
- # possible outcomes if the match?
If a procedure can be broken up into
k steps s.t.
- Step 1 can be done in \(n_1 \) ways \((2)\)
- Step 2 " " " " \(n_2 \) ways regardless
 of the outcome of the previous step \((2)\)
- Step \(j \) " " " " \(n_j \) ways regardless

\[\text{Ans: } 6 \]
\[\text{Ans: } 8 \]
\[\frac{2}{100} = 0.2 \]
of the outcomes of the previous steps:

\[\text{Step } k \ldots \ldots \text{ (2)} \]

Then, the number of outcomes of the procedure:

\[n_1 \times n_2 \times \ldots \times n_k \]
(Multiplication Rule).

Ex: Chairs of an auditorium
- upper-case letters
- the int \(\leq 100. \)

\[\# \text{ possible labelings?} \]

Solve: What is the set whose cardinality we are trying to find?
- set of all chair labelings.
\{ \emptyset , A , S , S , C , 19 \ldots \} \\

What is an element of the set?

Chair labeling.

The proc. of constructing a chair label is as follows:

\textbf{S1:} Choose an upper-case letter.

\textbf{S2:} " " thm 1 \leq 100 7.

\#ways to do Step 1 : 26.

" " Step 2 : 101 100

\[= 26 \times 101 = 2626 \] 9.

Ex: 3 officers: Pres, Treasurer, Sec.
4 people: A, B, C, D.

A cannot be the President.

C or D must be the Sec.

No officer assignments?

Set: $\{B, A, C, \ldots\}$

The proc. to construct an officer assignment is as follows.

S_1: Choose the President | 3

S_2: "" "" Treas. | 3

S_3: "" "" Sec | 2
By the Malt. rule, $\#\text{assign} = 3 \times 3 \times 2 = 18$.

S_1: Choose the Sec | 2
S_2: Choose the Trees | 3
S_3: " " Pres.

S_1: Choose the Sec | 2 ✓
S_2: " " Poes. | 2 ✓
S_3: " " Trees | 2 ✓

\[\prod_{i=1}^{n} \]

Ex: \(S = \{ x_1, x_2, \ldots, x_n \} \)

\(|P(S)| \) ?
$$S_0 : \rightarrow \{ \{x_1\}, \{x_1, x_2\}, \emptyset, \{x_2, x_3\}\} \cup \{x_4, x_5\}$$

The proc. of constr. a subset \(S \) is as fall.

\(S_1 \): Pick any element.

\(S_2 \): Decide another elem. decide whether \(x_4 \) is in or out

\(S_1 \): Decide the fate of \(x_1 - 2 \)

\(S_2 \): \(\ldots \) \(\ldots \) \(x_2 - 2 \)

\(S_n \): \(\ldots \) \(\ldots \) \(x_n - 2 \)

\(\square \)

\(2^n \)

Ex: # odd int b/w 1000 & 9999,
that have distinct digits?

\[\text{Soln: } \{1 \, 2 \, 3 \, 7\} \]

The pec: \(1 \ \underline{2} \ \underline{3} \ \underline{4} \)

\(\text{b/w 1000 & 9999} \) that have

distinct digits is as foll.

\(\text{S}_1: \) Choose the last digit: \(5 \)

\(\text{S}_2: \) " " first: \(8 \)

\(\text{S}_3: \) 2nd: \(8 \)

\(\text{S}_4: \) 3rd: \(7 \)

\(\text{Ans: } 5 \times 8 \times 8 \times 7. \)
Permutation, order.

\[S = \{ a, b, c \} \]

All possible permutation/orders of elements in S.

\[\begin{align*}
 a & \quad b & \quad c \\
 a & \quad c & \quad b \\
 b & \quad a & \quad c \\
 b & \quad c & \quad a \\
 c & \quad a & \quad b \\
 c & \quad b & \quad a
\end{align*} \]

\[\begin{array}{c}
 6.
\end{array} \]

\[S = \{ x_1, x_2, \ldots, x_n \} \]
permutation of elem in S?
The proc. to constr. a
permutation of elem in S is
as follows:

$\begin{array}{cccc}
1 & 2 & 3 & \cdots & n \\
\end{array}$

S_1: Choose an elem for pos. 1
S_2: " " " " " 2

ways to do step 1: n

2 : n-1
\[n = 1 \]

By the MR: \(1 \times 2 \times \ldots \times n \)

\[= n! \]

Ex: \(\{a,b,c,d,e,f,g,h\} \)

permutations that contain the string "abc".

\(\{ abc, d, e, f, g, h \} \)

\[\frac{6!}{6!} \]

the move I constr. \ldots \ldots
S_1: Choose a pose for a \(f \) \\
S_2: \\

6! \\

--- \\
\(a \times \tau_a \)