Introduction to Logic

A *proposition* is a statement that is either true or false. For example, “2 + 2 = 4” and “Donald Knuth is a faculty at Rutgers-Camden” are propositions, whereas “What time is it?”, $x^2 < x + 40$ are not propositions.

We can construct compound propositions from simpler propositions by using some of the following connectives. Let p and q be arbitrary propositions.

Negation: $\neg p$ (read as “not p”) is the proposition that is true when p is false and vice-versa.

Conjunction: $p \land q$ (read as “p and q”) is the proposition that is true when both p and q are true.

Disjunction: $p \lor q$ (read as “p or q”) is the proposition that is true when at least one of p or q is true.

Exclusive Or: $p \oplus q$ (read as “p exclusive-or q”) is the proposition that is true when exactly one of p and q is true is false otherwise.

Implication: $p \to q$ (read as “p implies q”) is the proposition that is false when p is true and q is false and is true otherwise.

The implication $q \to p$ is called the *converse* of the implication $p \to q$. The implication $\neg p \to \neg q$ is called the *inverse* of $p \to q$. The implication $\neg q \to \neg p$ is the *contrapositive* of $p \to q$. *p only if q* means “if not q then not p”, or equivalently if p then q.

Biconditional: $p \iff q$ (read as “p if, and only if, q”) is the proposition that is true if p and q have the same truth values and is false otherwise. “If and only if” is often abbreviated as iff.

The following truth table makes the above definitions precise.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \oplus q$</th>
<th>$p \to q$</th>
<th>$q \to p$</th>
<th>$p \iff q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Necessary and Sufficient Conditions: For propositions p and q,
p is a **sufficient** condition for q means that $p \rightarrow q$.

p is a **necessary** condition for q means that $\neg p \rightarrow \neg q$, or equivalently $q \rightarrow p$.

Why is $p \land q$ not the correct answer?

Thus p is a necessary and sufficient condition for q means “p iff q”.

Logical Equivalence

Two compound propositions are logically equivalent if they always have the same truth value. Two statement p and q can be proved to be logically equivalent either with the aid of truth tables or using a sequence of previously derived logically equivalent statements.

Example. Show that $p \rightarrow q \equiv \neg p \lor q \equiv \neg q \rightarrow \neg p$.

Solution. The truth table below proves the above equivalence.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$\neg q$</th>
<th>$p \rightarrow q$</th>
<th>$\neg p \lor q$</th>
<th>$\neg q \rightarrow \neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Example. Show that $p \equiv \neg p \rightarrow C$ and $p \rightarrow q \equiv (p \land \neg q) \rightarrow C$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$\neg q$</th>
<th>$p \rightarrow q$</th>
<th>$p \land \neg q$</th>
<th>$\neg p \rightarrow C$</th>
<th>$(p \land \neg q) \rightarrow C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

The above equivalence forms the basis of proofs by contradiction.

The logic of Quantified Statements

Consider the statement $x < 15$. We can denote such a statement by $P(x)$, where P denotes the predicate “is less than 15” and x is the variable. This statement $P(x)$ becomes a proposition when x is assigned a value. In the above example, $P(8)$ is true while $P(18)$ is false.

Another way to convert the statement $P(x)$ into a proposition is through **quantification**. The two types of quantification that we will study are **universal quantification** and **existential quantification**. Using universal quantifier \forall (“for all”) alongside $P(x)$ means that the statement $P(x)$ is true for all elements in the domain of x. Thus the proposition $\forall x \in D, P(x)$ is true when $P(x)$ is true for all $x \in D$ and is false if there is an element
$x' \in D$ for which $P(x')$ is false. Using existential quantifier \exists (“there exists”) alongside $P(x)$ means that there exists an element in the domain of x for which $P(x)$ is true. Thus the proposition $\exists x \in D, P(x)$ is true if there is an $x' \in D$ for which $P(x')$ is true and is false if $P(x)$ is false for all $x \in D$.

Examples of propositions using quantifiers are as follows.

1. $\forall x \in \mathbb{Z}, x^3 + 1$ is composite.
2. $\forall x \in \mathbb{Z}, x$ is even $\rightarrow x + 1$ is odd.
3. $\exists x \in \mathbb{N}, x^2 \neq x$.
4. $\exists x \in \mathbb{Z}, 2|x$ and $2|x + 1$.
5. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x + y = 0$.
6. $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x > y$.

Sometimes it helps (in proofs) to consider the negation of a proposition. Verify the following equivalence.

$$\neg(\forall x \in D, P(x)) \equiv \exists x \in D, \neg P(x)$$

$$\neg(\exists x \in D, P(x)) \equiv \forall x \in D, \neg P(x)$$

Proofs

We will illustrate some proof techniques by proving some properties about numbers. Before we do that let’s go through some basic definitions given below.

An integer n is **even** iff $n = 2k$ for some integer k. An integer is **odd** iff $n = 2k + 1$ for some integer k. Symbolically,

- n is even $\iff \exists$ an integer k s.t. $n = 2k$
- n is odd $\iff \exists$ an integer k s.t. $n = 2k + 1$

An integer n is **prime** iff $n > 1$ and for all positive integers r and s, if $n = r \cdot s$, then $r = 1$ or $s = 1$. Otherwise n is **composite**.

Given any real number x, the **floor of** x, denoted by $\lfloor x \rfloor$, is defined as follows

$$\lfloor x \rfloor = n \iff n \leq x < n + 1,$$ where n is an integer

Given any real number x, the **ceiling of** x, denoted by $\lceil x \rceil$, is defined as follows

$$\lceil x \rceil = n \iff n - 1 < x \leq n,$$ where n is an integer

A real number is **rational** iff it can be expressed as a ratio of two integers with a non-zero denominator. A real number that is not rational is **irrational**. More formally,

$$r \text{ is rational } \iff \exists \text{ integers } a \text{ and } b \text{ such that } r = a/b \text{ and } b \neq 0.$$
Example. Prove the following: If the sum of two integers is even then so is their difference.

Solution. Let m and n be particular but arbitrarily chosen integers such that $m + n$ is even. By definition of even, we have $m + n = 2k$, for some integer k. Then

$$m = 2k - n$$

Now $m - n$ can be written as follows.

$$m - n = 2k - n - n$$

$$= 2(k - n)$$

Since k and n are integers, $k - n$ is an integer, $2(k - n)$ is even and hence $m - n$ is even.

Example. Prove that, for all integers n, if n is odd then $n^2 + n + 1$ is odd.

Solution. Since n is odd $n = 2k + 1$ for some integer k. Then,

$$n^2 + n + 1 = (2k + 1)^2 + 2k + 1 + 1$$

$$= 4k^2 + 4k + 1 + 2k + 2$$

$$= 4k^2 + 6k + 2 + 1$$

$$= 2(2k^2 + 3k + 1) + 1$$

Since k is an integer, $p = 2k^2 + 3k + 1$ is an integer and $n^2 + n + 1$ is odd, since $n^2 + n + 1 = 2p + 1$ where p is an integer.