OH TODAY
- 10 pm - 11 pm.

Ex: Let n be an integer. If $n > 1$ then

$n^3 + 1$ is composite.

Proof: Let n be an arbitrary, but

particular integer s.t. $n > 1$. Then

$n^3 + 1 = n^3 (1 + \frac{1}{n^3})$

Since $n > 1$, n^3 is clearly greater than 1.

Since $\frac{1}{n^3} > 0$, $1 + \frac{1}{n^3} > 1$ &

hence $(n^3 + 1)$ is composite. X Begin!

$n^3 + 1 = (n+1)(n^2-n+1)$
Clearly, both terms are addition, subtraction, & prod. I & t & hence are integers.

\(x + 1\) is clearly greater than 1, since \(x > 1\).

What remains to show is that

\[x^2 - x + 1 > 0\]

\[x > 1\]

\[x^2 > x\]

\[x^2 - x > 0\]

\[x^2 - x + 1 > 1\]

\textbf{Done!}

\textbf{Ex:} Prove that if \(x\) and \(y\) are integers where \(x + y\) is even, then \(x\) and \(y\) are both odd or both even. (Want to prove \(p \Rightarrow q\) and \(q \Rightarrow p\).)
Prop: We will prove the claim by proving its contrapositive. That is, we will show that if exactly one of \(x \) or \(y \) is even and the other is odd, then \(x + y \) is odd. Without loss of generality, let:

Case I: \(x \) is even and \(y \) is odd.

By def., let \(x = 2k \), for some \(k \).

And \(y = 2l + 1 \), for some \(l \).

\[
x + y = 2k + 2l + 1
\]

\[
= 2(k + l) + 1
\]

\[
= 2z + 1, \quad \text{where } z = k + l
\]

\[
\therefore x + y \text{ is odd, by def.}
\]

Case II: \(x \) is odd and \(y \) is even.
Ex: Show that at least three of any 25 days chosen must fall in the same month of the year.

Proof: We want to show that if 25 days are chosen then \(\geq 3 \) must fall in the same month of the year.

\[
\begin{align*}
\neg (p \Rightarrow q) & \equiv \neg (\neg p \Rightarrow \neg q) \\
& \equiv \neg \neg p \land q \\
& \equiv p \land q
\end{align*}
\]

Negation: \(\neg (p \lor q) = p \land \neg q \).

Assume for contradiction that we have chosen 25 days and \(\leq 2 \) days fall in any month. We know that
Thus are 12 months in a year & hence a total of \(\leq 12 \times 2 = 24 \) days an year. This is a contradiction!

Ex: Prove that if \(3n + 2 \) is odd then \(n \) is odd.

Proof: Assume for contradiction that

\(3n + 2 \) is odd and \(n \) is even.

By defn, \(n = 2k \), for some int \(k \).

\[
\begin{align*}
3n + 2 &= 3(2k) + 2 \\
&= 2(3k + 1) \\
&= 2 \cdot l, \text{ where } l = 3k + 1 \text{ is an int.}
\end{align*}
\]

\(\therefore (3n + 2 \text{ is an even no.}) \)
Thus \((3n+2 \text{ is odd}) \land (3n+2 \text{ is even})\) is clearly a contradiction, hence our original claim must be true.

Ex: Prove that for all real nos \(a \& b\), if \(ab\) is irrational then either \(a\) or \(b\) or both must be irrational.

Proof: We will prove the claim by proving its contrapositive. That is, we will show that if \(ab\) is rational then exactly both \(a\) \& \(b\) must be rational.
That is we will show that if both \(a \) & \(b \) are rational then \(ab \) is rational. By defn of rational nos., let
\[
a = \frac{p}{q} \quad \text{&} \quad b = \frac{r}{s},
\]
where
\(p, q, r, s \) are int & \(q \neq 0 \) & \(s \neq 0 \).

\[
\therefore ab = \frac{pr}{qs}.
\]

Clearly, \(pr \) & \(qs \) are int & since
\(q \neq 0 \) & \(s \neq 0 \), \(qs \neq 0 \). Thus

\(ab \) is a rational no.

A & B are sets.
\[A \cup B = \{ x \mid x \in A \cup x \in B \} \]

\[A \cap B = \{ x \mid x \in A \cap x \in B \} \]

Two sets are disjoint iff \(A \cap B = \emptyset \).

\[A = \{1, 2\}, \quad B = \{1, 3\} \]

\[A \setminus B = \{1, 2\} \]

\[A \cup B = \{1, 2, 3\} \]

\[A \cap B = \{1\} \]

A collection of non-empty sets \(\{A_1, A_2, \ldots, A_n\} \)

partition the set \(A \) iff

(i) \(A_1 \cup A_2 \cup \ldots \cup A_n = A \).

(ii) \(A_1, A_2, \ldots, A_n \) are pairwise disjoint.
Set difference: $A \setminus B$

Cartesian product: $A \times B = \{ (a, b) \mid a \in A \text{ and } b \in B \}$

$A = \{1, 2\}$

$B = \{1, c\}$

$A \times B = \{(1,1), (1,c), (2,1), (2,c)\}$

$A = \{1, 2\}$, $B = \{1, c\}$
\[A \times B = \{ (1, 3), (2, 3) \}. \]

\[|A| = 2, \quad |B| = 3. \]

\[|A \times B| = 5, \quad 4, \quad 3, \quad 10. \]

\[6 \checkmark. \]

Ex: Let \(A = \{ 2, 2^2, 2^3, \ldots \} \)

\[B = \{ 2, 4, 6, \ldots \}. \] Prove that \(A \subseteq B \)

Proof: Note that

\[B = \{ 2i \mid i \in \mathbb{Z}^+ \}. \]

Let \(x \) be an arbitrary but particular element in \(A \). Let

\[x = 2^k, \] for some int \(k > 1. \)
\[= 2 \cdot \left[\begin{array}{c} k-1 \\ 2 \end{array} \right] \]

Since \(k \geq 1 \), \(k-1 \geq 0 \) & hence \(2^{k-1} \geq 1 \). Thus, \(x = 2 \cdot j \),
where \(j \in \mathbb{Z}^+ \) & hence \(x \in B \).

Ex: Let \(A \) & \(B \) be sets. Then
\[A = B \iff A \subseteq B \text{ and } B \subseteq A. \]

Proof:
\[(\Rightarrow) \text{ A } = \text{ B } \Rightarrow A \subseteq B \text{ and } B \subseteq A. \]
\[A \subseteq A \text{ & since A } = \text{ B }, A \subseteq B \text{ and } B \subseteq A. \]
\[\text{ B } \subseteq A. \]

\[(\Leftarrow) \boxed{A \subseteq B} \text{ and } \boxed{B \subseteq A} \Rightarrow A = B. \]

Let \(x \) be any element in \(A \).

Since \(A \subseteq B \), clearly \(x \in B \).
Since \(B \subseteq A \), there is no element in \(B \) that is not in \(A \).

Similarly, if \(y \) is any element in \(B \), we can show that \(y \in A \) & there is no element in \(A \) that is not in \(B \). Thus both \(A \) & \(B \) must have the same elements.

Ex: Prove that if \(A \) & \(B \) are non-empty set then

\[
A \times B = B \times A \quad \text{if} \quad A = B.
\]

Proof: \((\Leftrightarrow) \) \(A = B \Rightarrow A \times B = B \times A \).
AxB = AxA = BxA.

(⇒) AxB = BxA ⇒ A = B.

let x & y be arb. but particular elements in A & B resp. We want to show that x ∈ B and y ∈ A.

Clearly, (x, y) ∈ AxB. Since

AxB = BxA , (x, y) ∈ BxA.

This mean that x ∈ B & y ∈ A.