OFFICE HOURS TODAY
- 1-2pm ET.

EE: Prove that every sequence of n^2+1 distinct real numbers $x_1, x_2, \ldots, x_{n^2+1}$ contains a subsequence of length $n+1$ that is either strictly increasing or strictly decreasing.

Example: $n = 3$

$m_1 = 3$, $m_2 = 3$, $m_3 = 2$, $m_4 = 3$, $m_5 = 2$, $m_6 = 2$, $m_7 = 1$, $m_8 = 2$

\[x_1, x_2, x_3, x_4, 18, 17, 45, 14, 37, 6, 51, 4, 28, 20\]

Proof: Suppose there is no subsequence of length $n+1$. We want to then show that there is a subsequence of length $n+1$. Let m_k be the length of the longest subseq. starting from x_k.

Thus we have $m_1, m_2, \ldots, m_{n^2+1}$. Note that
1 \leq m_j \leq n, \forall j. We apply PHP as follows.

Consider n holes: one corr. to each value of m_j. The pigeon are m_1, m_2, \ldots, m_{n+1}.

By the PHP, there must be a bin that has \geq n+1 not. That is, \exists m_j's have the same value. Let there nos be

\[m_{k_1} = m_{k_2} = m_{k_3} = \ldots = m_{k_{n+1}}. \]

\[1 \leq k_1 < k_2 < k_3 < \ldots < k_{n+1} \]

Consider the corresponding x_i's

\[x_{k_1} \geq x_{k_2} > x_{k_3} > \ldots > x_{k_{n+1}} \]

Suppose <
There is a subseq. starting from \(x_k \) that has length \(m_{k_2} + 1 = m_{k_1} + 1 \), a contradiction.

Probability

- Random process / experiment
- Mathematical model to represent the experiment
- Sample space \(\Omega \): set of all possible outcomes of the experiment
- Probability distribution: assigning probabilities to each outcome of the experiment, i.e., assigning prob to each outcome \(\Omega \).
- For any event E, $\Pr[E] = \sum_{\omega \in E} \Pr[\omega]$

Example: Biased coin
- $\Pr[H] = \frac{1}{3}$

Flip the coin twice

$\Pr[\text{we obtain one T and one H}]$?

Solution:
$E = \{\text{HT}, \text{TH}\}$

$\Pr[E] = \Pr[\text{HT}] + \Pr[\text{TH}] = \frac{2}{9} + \frac{2}{9} = \frac{4}{9}$.

Ex: Roll two dice. Compute the probability that the two faces are equal if the two dice are distinct.

Solu: $\Omega = \{(1,1), (1,2), \ldots, (1,6), (2,1), (2,2), \ldots, (2,6), \ldots, (6,1), (6,2), \ldots, (6,6)\}$

$\forall \omega \in \Omega, \ Pr[\omega] = \frac{1}{36}$

$E = \{(1,1), (2,2), \ldots, (6,6)\}$
\(\Pr \{ E \} = \frac{1}{36} \cdot 6 = \frac{1}{6} \).

What if the two dice are identical?

\(\Omega = \{ \{1,1\}, \{1,2\}, \{1,3\}, \ldots, \{1,6\}, \{2,2\}, \ldots, \{2,6\}, \ldots, \{3,6\} \} \)

\(X \) Bofus!

Non-uniform distribution.

\(|\Omega| = 21\)

\(\forall \omega \in \Omega, \Pr \{ \omega \} = \frac{1}{21} \).

\(\Pr \{ E \} = \frac{6}{21} = \frac{2}{7} \).

\(\Pr \{ E \} = \frac{6}{36} = \frac{1}{6} \).

Ex: \(\frac{m}{n} \) distinct balls in \(n \) bins. Each ball is equally
no bound on the # balls in a bin.

Pr [bin 1 contains all the balls] ?

\[\Omega = \left\{ (w_1, w_2, \ldots, w_m) \mid w_i : \text{bin that ball } i \text{ lands in} \right\}, \quad 1 \leq w_i \leq n. \]

\[|\Omega| = n^m \]

\[\forall \omega \in \Omega, \quad \text{Pr}[\omega] = \frac{1}{n^m}. \]

\[E = \{ (1, 1, \ldots, 1) \} \]

\[\text{Pr}(E) = \frac{1}{n^m} \]

Ex: Roll a 6-sided 6 times. What is the prob. of seeing all nos?

\[\Omega = \left\{ (w_1, w_2, \ldots, w_6) \mid w_i : \text{result of the } i\text{th die} \right\} \]

\[\text{\color{red}{likely to run out of time.}} \]
\[|E| = 6 \]

\[\forall \omega \in \Omega, \quad \Pr(\omega) = \frac{1}{6} \]

\[E = \{ 1, 2, 3, 4, 5, 6 \} \]

\[\Pr(E) = \frac{1}{6} \]

\[\Pr(\bar{E}) = 6! \cdot \frac{1}{6} \]

Example:

1. Contestant
2. Can.
3. Contestant

Do you want to switch?

1000 doors
Prize behind one door
999 doors w/goats
Host opens 998 other doors
Should you switch?
Q: Should the contestant switch or stay put?

\[S = \{ (P, C, h) \} \]

\[\begin{align*}
\text{pr in door} & \quad \text{door that contestant chose} & \quad \text{door that the host opened} \\
(1, 1, 2) & \quad \frac{1}{3} & \quad \frac{1}{2} & \quad \frac{1}{6} \\
(1, 1, 3) & \quad \frac{1}{3} & \quad \frac{1}{3} & \quad \frac{1}{9} \\
(1, 2, 3) & \quad \frac{1}{3} & \quad \frac{1}{3} & \quad \frac{1}{9} \\
& \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
& \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \\
& \frac{1}{18} & \frac{1}{18} & \frac{1}{18} \\
& \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
& \frac{1}{18} & \frac{1}{18} & \frac{1}{18} \\
& \frac{1}{18} & \frac{1}{18} & \frac{1}{18} \\
& \frac{1}{18} & \frac{1}{18} & \frac{1}{18} \\
\end{align*} \]

\[6 \cdot \frac{1}{9} = \frac{2}{3} \]

always switch

\[\Pr[\text{contestant switches & wins}] = \Pr[\text{contestant chooses a goat door the 1st time}] \]

\[= \frac{2}{3} \]

Inclusion-Exclusion.
\[
\Pr \left(X \cup Y \right) = \sum_{\omega \in X \cup Y} \Pr \left(\omega \right)
\]
\[
\leq \sum_{\omega \in X} \Pr \left(\omega \right) + \sum_{\omega \in Y} \Pr \left(\omega \right) - \sum_{\omega \in X \cap Y} \Pr \left(\omega \right)
\]
\[
\leq \Pr \left(X \right) + \Pr \left(Y \right) - \Pr \left(X \cap Y \right).
\]
\[
\Pr \left(X \cup Y \cup Z \right) \leq \Pr \left(X \cup \Pr \left(Y \right) \cup \Pr \left(Z \right) \right)
\]
\[
- \Pr \left(X \cap Y \right) - \Pr \left(Y \cap Z \right) - \Pr \left(X \cap Z \right)
\]
\[
+ \Pr \left(X \cap Y \cap Z \right).
\]
\[
\Pr \left(\bigcup_{i=1}^{n} X_i \right) \leq \sum_{i=1}^{n} \Pr \left(X_i \right)
\]
Ex: 3 flips of a fair coin.

\[\Pr \left[\text{1st flip gives H or the 3rd flip gives a H} \right] \]

Soh: \(\Omega = \{ HHH, HHT, \ldots , THT, \ldots \} \)

\(F_1 \): event that 1st flip gives H.

\(F_2 \): 3rd flip gives H.

\[\Pr \left[F_1 \cup F_2 \right] = \Pr \left(F_1 \right) + \Pr \left(F_2 \right) - \Pr \left(F_1 \cap F_2 \right) \]

\[= \frac{1}{2} + \frac{1}{2} - \frac{1}{4} \]

\[= \frac{3}{4} \]

Ex: Coin tossed 10 times. \(\Pr \left[8 \text{ or more heads occur} \right] \).

Soh: Ex: event that exactly 8 heads
\[P(\{E_8 \lor E_9\}) = 0 \]

Ex: 8 dice. \[P(\text{on \geq 1 the \text{ die result is a 4}}) \]