Example. (Birthday Paradox) Suppose there are \(k \) people in a room and \(n \) days in a year. We are interested in the probability that there are at least two people in the room with the same birthday. What is the smallest value of \(k \) for which this probability is at least 1/2? Assume that it is equally likely for a person to be born on any of the \(n \) days of the year.

Solution. Let \(B \) be the event that at least two people in the room have the same birthday. We are interested in \(\Pr[B] \).

\[
\Pr[B] = 1 - \Pr[B'] = 1 - \frac{P(n, k)}{n^k}
\]

For \(n = 365 \), the smallest value of \(k \) for which the RHS is at least 1/2 is 23. If \(k = 40 \) then \(\Pr[B] = 0.89 \), and if \(k = 60 \) then \(\Pr[B] = 0.994 \). This means that if there are 60 people then it is almost certain that there exists two among them sharing the same birthday. To illustrate how good our model is, consider the set of presidents of the United States of America. Through Bill Clinton, 41 people belong to this set. The chances of two of them sharing the same birthday is at least 89%. Indeed, James Polk (11th president) and Warren Harding (29th president) are both born on Nov. 2.

Conditional Probability

We now introduce a very important concept of conditional probability. Conditional probability allows us to calculate the probability of an event when some partial information about the result of an experiment is known. As we shall see conditional probability is often a convenient way to calculate probabilities even when no information about the result of an experiment is available.

Suppose we want to calculate the probability of event \(A \) given that event \(B \) has already occurred. We denote this by \(\Pr[A|B] \) (read as “the probability of \(A \) given \(B \)”). Since we know that event \(B \) has occurred our sample space reduces to the outcomes in \(B \). Is this a valid probability space? No, because the sum of probabilities of the outcomes in \(B \) is less than 1. How do we change the probabilities so that this is a valid probability distribution while making sure that the relative probabilities of outcomes in \(B \) do not change? We do this by scaling the probability of all sample points in \(B \) by \(\frac{1}{\Pr[B]} \). Thus for each sample point \(\omega \in B \),

\[
\Pr[\omega|B] = \frac{\Pr[\omega]}{\Pr[B]}
\]
To calculate $\Pr[A|B]$ we just sum up the probabilities of sample points in $A \cap B$. Thus we get
\[
\Pr[A|B] = \sum_{\omega \in A \cap B} \Pr[\omega|B] = \sum_{\omega \in A \cap B} \frac{\Pr[\omega]}{\Pr[B]} = \frac{\Pr[A \cap B]}{\Pr[B]}
\]
In order to avoid division by 0, we only define $\Pr[A|B]$ when $\Pr[B] > 0$. Conditional probabilities can sometimes get tricky. To avoid pitfalls, it is best to use the above mathematical definition of conditional probability. Note that the R.H.S. of the above equation are unconditional probabilities.

Example. Suppose we flip two fair coins. What is the probability that both tosses give heads given that one of the flips results in heads? What is the probability that both tosses give heads given that the first coin results in heads?

Example. Suppose we flip two fair coins. What is the probability that both tosses give heads given that one of the flips results in heads? What is the probability that both tosses give heads given that the first coin results in heads?

Solution. We consider the following events to answer the question.

- A: event that both flips give heads.
- B: event that one of the flips gives heads.
- C: event that the first coin flip gives heads.

Let’s first calculate $\Pr[A|B]$.
\[
\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{\Pr[A]}{\Pr[B]} = \frac{1/4}{3/4} = \frac{1}{3}.
\]
Similarly we can calculate $\Pr[A|C]$ as follows.
\[
\Pr[A|C] = \frac{\Pr[A \cap C]}{\Pr[C]} = \frac{\Pr[A]}{\Pr[C]} = \frac{1/4}{1/2} = \frac{1}{2}.
\]
The above analysis also follows from the tree diagram in Figure 1.

The Multiplication Rule. For any two events A_1 and A_2 we have
\[
\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2|A_1]
\]
The above formula follows from the definition of $\Pr[A_2|A_1]$. This formula can be generalized to n events. We state the generalization without proof.
\[
\Pr[A_1 \cap A_2 \cap \cdots \cap A_n] = \Pr[A_1] \cdot \Pr[A_2|A_1] \cdot \Pr[A_3|A_1 \cap A_2] \cdots \Pr[A_n|A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_{n-1}]
\]

Example. The probability that a new car battery functions for over 10,000 miles is 0.8, the probability that it functions for over 20,000 miles is 0.4, and the probability that it functions for over 30,000 miles is 0.1. If a new car battery is still working after 10,000 miles, what is the probability that (i) its total life will exceed 20,000 miles, (ii) its additional life will exceed 20,000 miles?
Solution. We will consider the following events to answer the question.

L_{10}: event that the battery lasts for more than 10K miles.
L_{20}: event that the battery lasts for more than 20K miles.
L_{30}: event that the battery lasts for more than 30K miles.

We know that $\Pr[L_{10}] = 0.8$, $\Pr[L_{20}] = 0.4$ and $\Pr[L_{30}] = 0.1$. We are interested in calculating $\Pr[L_{20}|L_{10}]$ and $\Pr[L_{30}|L_{10}]$.

$$\Pr[L_{20}|L_{10}] = \frac{\Pr[L_{20} \cap L_{10}]}{\Pr[L_{10}]} = \frac{\Pr[L_{20}] \cdot \Pr[L_{10}|L_{20}]}{0.8} = \frac{0.4 \times 1}{0.8} = \frac{1}{2}$$

By doing similar calculations it is easy to verify that $\Pr[L_{30}|L_{10}] = \frac{1}{8}$.

Example. An urn initially contains 5 white balls and 7 black balls. Each time a ball is selected, its color is noted and it is replaced in the urn along with two other balls of the same color. Compute the probability that the first two balls selected are black and the next two white.

Solution. We will consider the following events to answer the question.
B_1: event that the first ball chosen is black.

B_2: event that the second ball chosen is black.

W_3: event that the third ball chosen is white.

W_4: event that the fourth ball chosen is white.

We are interested in calculating $\Pr[B_1 \cap B_2 \cap W_3 \cap W_4]$. Using the Multiplication rule we get,

$$\Pr[B_1 \cap B_2 \cap W_3 \cap W_4] = \Pr[B_1] \cdot \Pr[B_2|B_1] \cdot \Pr[W_3|B_1 \cap B_2] \cdot \Pr[W_4|B_1 \cap B_2 \cap W_3]$$

$$= \frac{7}{12} \times \frac{9}{14} \times \frac{5}{16} \times \frac{7}{18}$$

$$= \frac{35}{768}$$

The Total Probability Theorem. Consider events E and F. Consider a sample point $\omega \in E$. Observe that ω belongs to either F or \overline{F}. Thus, the set E is a disjoint union of two sets: $E \cap F$ and $E \cap \overline{F}$. Hence we get

$$\Pr[E] = \Pr[E \cap F] + \Pr[E \cap \overline{F}]$$

$$= \Pr[F] \times \Pr[E|F] + \Pr[\overline{F}] \times \Pr[E|\overline{F}]$$

In general, if A_1, A_2, \ldots, A_n form a partition of the sample space and if $\forall i, \Pr[A_i] > 0$, then for any event B in the same probability space, we have

$$\Pr[B] = \sum_{i=1}^{n} \Pr[A_i \cap B] = \sum_{i=1}^{n} \Pr[A_i] \times \Pr[B|A_i]$$

Example. A medical test for a certain condition has arrived in the market. According to the case studies, when the test is performed on an affected person, the test comes up positive 95% of the times and yields a “false negative” 5% of the times. When the test is performed on a person not suffering from the medical condition the test comes up negative in 99% of the cases and yields a “false positive” in 1% of the cases. If 0.5% of the population actually have the condition, what is the probability that the person has the condition given that the test is positive?

Solution. We will consider the following events to answer the question.

C: event that the person tested has the medical condition.

\overline{C}: event that the person tested does not have the condition.

P: event that the person tested positive.

We are interested in $\Pr[C|P]$. From the definition of conditional probability and the total
probability theorem we get

\[
\Pr[C | P] = \frac{\Pr[C \cap P]}{\Pr[P]} = \frac{\Pr[C] \Pr[P | C]}{\Pr[P \cap C] + \Pr[P \cap \neg C]} = \frac{\Pr[C] \Pr[P | C]}{\Pr[C] \Pr[P | C] + \Pr[\neg C] \Pr[P | \neg C]}
\]

\[
= \frac{0.005 \times 0.95}{0.005 \times 0.95 + 0.995 \times 0.01} = 0.323
\]

This result means that 32.3% of the people who are tested positive actually suffer from the condition!