CIS 160 Recitation #3

Induction, Multisets, and Combinatorial Proofs
Propositions (brief review)

Sample proposition: Prove that the product of a non-zero rational number and an irrational number is irrational.

Contrapositive: If the product of two numbers is rational, then the two numbers are not a non-zero rational number and an irrational number.

Contradiction: Assume for the sake of contradiction that the product of a non-zero rational number and an irrational number is rational.
Induction

Let $P(n)$ be a predicate whose truth depends on n.

We want to prove that $P(n)$ is true for all integers n greater than or equal to some integer n_0.

Base Case: Show $P(n_0)$ is true.

Induction Hypothesis: Assume $P(k)$ is true for some integer $k \geq n_0$.

Induction Step: Using this assumption, prove that $P(k + 1)$ is true.
Multisets

If we have a multiset M with n_1 objects of type a_1, n_2 objects of type a_2, ..., and n_k objects of type a_k, such that objects of the same type are indistinguishable from one another, then the number of permutations of the objects in M is:

$$\frac{(n_1 + n_2 + \ldots + n_k)!}{n_1!n_2!\ldots n_k!}$$
Sticks and Crosses

What if we want to take r-combinations with repetition?

Think of “sticks” as dividers between categories of objects.

Think of “crosses” as objects that we assign to each category.

Then, if we have \(n \) categories and we want to select \(r \) objects with repetition, we “permute” \(n - 1 \) sticks and \(r \) crosses:

\[
\binom{n + r - 1}{r}
\]

r-combinations
Combinatorial Proofs

- We can prove that two expressions are equivalent by showing that they are both a solution to the same counting question.
- To do so, we come up with a counting question and two valid counting procedures that answer the question, one that results in one expression, and another that results in the other expression.

- We will do an example today.