CIS 160
Recitation Guide - Week 8

Topics Covered: Strong Induction, Probability

Problem 0: Please fill out the following Mid-Semester Feedback Form: bit.ly/cis160-feedback-s19
This form is completely anonymous and will help us improve the course. Please be honest!
Problem 1: A car needs 1 unit of length to park while a truck needs 2 units of length. Assume that cars are indistinguishable and so are trucks. How many distinct car/truck parking patterns are possible along an n unit long sidewalk?

Solution:

We write the parking patterns as a string of Cs and Ts. Here are two distinct ways in which 3 cars and 2 trucks can be parked along a sidewalk that is 7 units long: CTCCT and TCTCC.

<table>
<thead>
<tr>
<th>length</th>
<th>patterns</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>CC T</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>CT CCC TC</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CCT TT CTC CCCC TCC</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>CTT CCCT TCT CCTC TTC CTCC CCCCC TCCC</td>
<td>8</td>
</tr>
</tbody>
</table>

We prove by induction that the number of distinct parking patterns along a sidewalk of length $n \geq 1$ is F_{n+1}. It’s a special strong induction with an IH only for k and $k - 1$, and hence two base cases.

(BASE CASE 1) $n = 1$. Only 1 pattern, C. $F_2 = 1$. ✓

(BASE CASE 2) $n = 2$. 2 patterns, CC and T. $F_3 = 2$. ✓

(INDUCTION STEP) Let k arbitrary, $k \in \mathbb{Z}, k \geq 2$.

Assume (IH) that the number of patterns for length $k - 1$ is F_k and that the number of patterns for length k is F_{k+1}.

Now consider a pattern p for length $k + 1$. Depending on whether this pattern ends with a car or a truck, we have two cases.

Case 1. The last vehicle in p is a car, that is, $p = rC$. Then, r has length $k + 1 - 1 = k$. By IH, there are F_{k+1} distinct r’s. Therefore, in this case, we have F_{k+1} distinct patterns.

Case 2. The last vehicle in p is a truck, that is, $p = sT$. Then, s has length $k + 1 - 2 = k - 1$. By IH, there are F_k distinct s’s therefore F_k distinct p’s in this case.

Since these two cases are disjoint, by the addition rule, there are $F_{k+1} + F_k = F_{k+2}$ distinct patterns.
Problem 2:
Compute the probability of the event “when we roll \(n \) (distinguishable) fair dice any \(k \) of the dice show the same number while the other \(n - k \) show numbers different from the one shown by the \(k \) dice”. Assume \(n \geq 3 \) and \(\frac{n}{2} < k < n \).

Solution:
As discussed in class, we have a uniform probability space whose outcomes are sequences of length \(n \) of numbers from \([1 .. 6]\). In other words, the \(\Omega \) is given by the cartesian product of \([1 .. 6] \times \cdots \times [1 .. 6] \) (\(n \) times), i.e., \(\Omega = [1 .. 6]^n \). By the Multiplication Rule, there are \(6 \times \cdots \times 6 = 6^n \) such sequences so each outcome has probability \(\frac{1}{6^n} \).

Let \(E \) be the event where exactly \(k \) of the dice show the same number. We see that we are trying to find \(\Pr[E] \). To compute the desired probability it suffices, by Lecture 12 slide 15, to count the cardinality of \(E \), i.e., the number of sequences (of interest) in which \(k \) positions have the same number from \(t \in [1 .. 6] \) while the other \(n - k \) position show numbers different from \(t \). Such a sequence can be constructed as follows:

Step 1: Choose \(t \in [1 .. 6] \). This can be done in 6 ways.
Step 2: Choose \(k \) of the \(n \) positions in the sequence. This can be done in \(\binom{n}{k} \) ways.
Step 3: Place \(t \) in each of these positions. This can be done in 1 way.
Step 4: For each of the remaining \(n - k \) positions choose a number from \([1 .. 6] \setminus \{t\}\). We see that there are 5 such numbers, and \(n - k \) positions that we have left to fill. Thus, this can be done in \(5^{n-k} \) ways.

By the Multiplication Rule, the number of sequences of interest is \(6 \binom{n}{k} 5^{n-k} \). Hence, the probability we are asked for is given by:

\[
\Pr[E] = \frac{|E|}{|\Omega|} = \left(6 \binom{n}{k} 5^{n-k} \right) \frac{1}{6^n} = \binom{n}{k} \frac{5^{n-k}}{6^{n-1}}
\]

Aside:
A student from recitation brought up the following point. Why doesn’t our method overcount? For example, let us consider the outcome \(T = (1, 1, 2, 2, 3, 3) \in \Omega \) for \(n = 6 \). We could derive \(T \) by first picking \(t = 1 \) and assigning it to the first two dice. Then in step 4 we could generate \((2, 2, 3, 3)\). Similarly our method allows us to pick \(t \neq 1 \). We will show it is impossible to construct our tuple \(T \) again when \(t \neq 1 \). To see this, notice that because \(k > \frac{n}{2} \) any tuple constructed with \(t \) chosen in step 1 will have more than half of the positions will be filled with \(t \). But our tuple \(T \) had 1 in the more than half of its positions! So no matter what we do in steps 2-4 we could have never constructed \(T \) again.
Problem 3 Compute the probability of the event “when we roll two identical 6-sided beige dice the numbers add up to an even number.”

Solution:

We first observe, by our discussion in lecture, the sample space for this problem is given by:

\[\Omega = \{ \{x, y\} \mid x, y \in [1..6], x \neq y \} \cup \{x-x \mid x \in [1..6] \} \]

Let \(E \) be the event where the sum of the two rolls results in an even number. Note that we have \(\binom{6}{2} = 15 \) outcomes in which the dice show different numbers; each of these has probability \(\frac{1}{18} \) by our analysis in lecture. Among these outcomes, the numbers add up to an even number if they are both odd, and there are 3 of these, \(\{1, 3\} \), \(\{1, 5\} \), \(\{3, 5\} \), or if they are both even – there also 3 of these: \(\{2, 4\} \), \(\{2, 6\} \), \(\{4, 6\} \). So that’s 6 outcomes of probability \(\frac{1}{18} \) each in which the numbers are different.

We also have 6 more outcomes in which the die show the same number; each of these has probability \(\frac{1}{36} \), again from lecture. In all these outcomes the numbers add up to an even number, hence we have another 6 outcomes of probability \(\frac{1}{36} \) each.

We now calculate the desired probability using the definition of event:

\[
\Pr[E] = \sum_{w \in E} \Pr(w) = \Pr[\{1, 3\}] + \Pr[\{1, 5\}] + \Pr[\{3, 5\}] + \Pr[\{2, 4\}] + \Pr[\{2, 6\}] + \Pr[\{4, 6\}] + \sum_{x \in [1..6]} \Pr[x-x]
\]

\[
= 6 \times \frac{1}{18} + 6 \times \frac{1}{36} = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}
\]

That’s the same answer that we got in the lecture. Since “adding up to even” is an event in which the die color doesn’t matter, we could have provided a solution that assumes the dice are green-purple rather than beige-beige.