Recitation Guide - Week 6

Topics Covered: Graphs

Mid semester Feedback Form: Please fill out the following form. All answers are anonymous. https://bit.ly/2PpTukI

Problem 1: Consider the statement: in any graph, there is an even number of vertices with odd degree. While you proved this in lecture already, now prove it using induction.

Solution:

We will prove this statement by induction on the number of edges, m. Let $P(m)$ be defined as:

In any graph with m edges, there are an even number of vertices of odd degree.

Base Case: $P(0)$ holds, because a graph with no edge has only isolated vertices, that is, vertices of degree 0. Hence, there are an even number (0) of vertices with odd degree.

Induction Step: Assume $P(k)$ is true, for an arbitrary $k \in \mathbb{N}$. Now, we want to prove $P(k + 1)$ is true.

Let G be a graph with $k + 1$ edges. Remove an arbitrary edge $e = \{u, v\}$ from G (note that it could be any edge), so that we now have a graph G' with k edges. By the Induction Hypothesis, the number of vertices with odd degree in G' is even. Denote the number of vertices with odd degree in G' to be $2a$, where $a \in \mathbb{N}$. Now put back the edge e that we removed earlier. Observe that doing so increases the degree of vertices u and v by one each. We consider the following three cases:

Case 1: Both u and v have odd degree in G'. Adding e back would make the degree of both u and v even. Hence, the number of vertices with odd degree becomes $2a - 2$.

Case 2: Both u and v have even degree in G'. Adding e back would make the degree of both u and v odd. Hence, the number of vertices with odd degree becomes $2a + 2$.

Case 3: Exactly one of u and v has odd degree in G'. WLOG, assume u has an odd degree and v has an even degree in G'. Adding e back would result in u with an even degree and v with an odd degree. Hence, the number of vertices with odd degree would stay unchanged ($2a$).

In all cases, the number of odd degree vertices in G is even. Thus, we have shown our claim is true when $m = k + 1$, concluding our Induction Step and completing our proof.