
CIS 194: Homework 2
Due Friday, September 12

Be sure to write functions with exactly the specified name and
type signature for each exercise (to help us test your code). You may
create additional helper functions with whatever names and type
signatures you wish.

You are allowed (and encouraged) to use functions in the Data.List

standard library. You can find a list of these functions at http://
hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html.
The type signatures tell you much about what these functions do.
To experiment with them, just say import Data.List in GHCi and
start trying out expressions. Remember that a String is just a list of
characters (that is, a [Char]), and so provides conveniently-written
test data.

You will see that some of the type signatures have something like
Eq a => appearing in them. For now, completely ignore this bit of the
type signature, called a typeclass constraint. You’ll learn much more
about these constraints later.

Local variables

The introduction in the first class meeting did not discuss local vari-
ables. Here, we see a few examples of local variables in case these
constructs are useful for you in writing your homework solutions.

let expressions

To define a local variable scoped over an expression, use let:

strLength :: String -> Int

strLength [] = 0

strLength (_:xs) = let len_rest = strLength xs in

len_rest + 1

In this case, the use of the local variable is a little silly (better style
would just be 1 + strLength xs), but it demonstrates the use of let.
Don’t forget the in after you’ve defined your variable!

where clauses

To define a local variable scoped over multiple guarded branches, use
where:

frob :: String -> Char

frob [] = ’a’ -- len is NOT in scope here

http://hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html
http://hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html

cis 194: homework 2 2

frob str

| len > 5 = ’x’

| len < 3 = ’y’

| otherwise = ’z’

where

len = strLength str

Note that the len variable can be used in any of the alternatives
immediately above the where clause, but not in the separate top-level
pattern frob [] = ’a’. In idiomatic Haskell code, where is somewhat
more common than let, because using where allows the programmer
to get right to the point in defining what a function does, instead of
setting up lots of local variables first.

Haskell Layout

Haskell is a whitespace-sensitive language. This is in stark contrast
to most other languages, where whitespace serves only to separate
identifiers. (Haskell shares this trait with Python, which is also
whitespace-sensitive.) Haskell uses indentation level to tell where
certain regions of code end, and where new statements appear. The
basic idea is that, when a so-called layout herald appears, GHC looks
at the next thing it sees and remembers its indentation level. A later
line that begins at the exact same indentation level is considered an-
other member of the group, and a later line that begins at a lesser
(more to the left) indentation level is not part of the group.

The layout heralds are where, let, do, of, and \ case. Because
Haskell modules begin with module Name where, that means that the
layout rule is in effect over the declarations in the file. This means
that the following is no good:

x :: Int

x =

5

The problem is that the 5 is at the same indentation level (zero)
as other top-level declarations, and so GHC considers it to be a new
declaration instead of part of the definition of x.

The layout rule is often a source of confusion for newcomers to
Haskell. But, if you get stuck, return to this decription (or, any of
the many online) and re-read — often, if you think carefully enough
about it, you’ll see what’s going on.

When calculating indentation level, tabs in code (you don’t have
any of these, do you?!?) are considered with tab stops 8 characters
apart, regardless of what your editor might show you. This potential
confusion is why tabs are a terrible, terrible idea in Haskell code.

cis 194: homework 2 3

Accumulators

Haskell’s one way to repeat a computation is recursion. Recursion is
a natural way to express the solutions to many problems. However,
sometimes a problem’s structure doesn’t exactly match Haskell’s
structure. For example, say we have a list of numbers — that is, a
[Int]. We wish to sum the elements in the list, but only until the
sum is greater than 20. After that, the rest of the numbers should be
ignored. Because recursion over a list builds up the result from the
end backward, a naive recursion will not work for us. What we need
is to keep track of the running sum as we go deeper into the list. This
running sum is called an accumulator.

Here is the code that solves the stated problem:

sumTo20 :: [Int] -> Int

sumTo20 nums = sumTo20Helper 0 nums -- the acc. starts at 0

sumTo20Helper :: Int -> [Int] -> Int

sumTo20Helper acc [] = acc -- empty list: return the accumulated sum

sumTo20Helper acc (x:xs)

| acc >= 20 = acc

| otherwise = sumTo20Helper (acc + x) xs

Example: sumTo20 [4,9,10,2,8] == 23

This technique of using an accumulator may be helpful in this
assignment.

Scrabble

It’s time to have some fun!

You will be writing functions to help in a computer player for a
Scrabble game. Though familiarity with the rules is not assumed for
this assignment, you may wish to read them at http://www.hasbro.
com/scrabble/en_US/discover/rules.cfm.

http://www.hasbro.com/scrabble/en_US/discover/rules.cfm
http://www.hasbro.com/scrabble/en_US/discover/rules.cfm

cis 194: homework 2 4

We will be using some type definitions to make this work nicely.
Please download the HW02.hs file (linked from the “Lectures” page)
and edit that file. You will also need the file Words.hs, which defines
a list of all possible Scrabble words. Make sure these files are in the
same directory, so that the files can see each other.

Many of the functions return lists of words. The order of the
words within the list does not matter.

Exercise 1 The first function you will write tests whether a certain
word is formable from the tiles in a Scrabble hand. That is, given a
String and a list of Chars, can the String be formed from the Chars,
taking any duplicates into account?

As described in HW02.hs, we use a type synonym type Hand = [Char]

to talk about Scrabble hands, to make it very clear where order mat-
ters (in words) and where it does not (in hands).

formableBy :: String -> Hand -> Bool

Example: formableBy "fun" [’x’,’n’,’i’,’f’,’u’,’e’,’l’] == True

Example: formableBy "haskell" [’k’,’l’,’e’,’h’,’a’,’l’,’s’] == True

Example: formableBy "haskell" [’k’,’l’,’e’,’h’,’a’,’y’,’s’] == False

Hint: Start by thinking what this should do if the string to be
matched is empty. Then, what should it do if the string is non-
empty? The elem and delete functions from Data.List may be
helpful here.

Exercise 2 Now, using formableBy, write a function wordsFrom that
gives a list of all valid Scrabble words formable from a certain hand.
The Words module (imported by the HW02.hs you downloaded) al-
lows you to use allWords :: [String], which contains all valid
Scrabble words.

wordsFrom :: Hand -> [String]

Example: wordsFrom [’a’,’b’,’c’,’d’] == ["ab","ad","ba","bad","cab","cad","dab"]

Example: wordsFrom [’h’,’e’,’l’,’l’,’o’] ==

["eh","el","ell","he","hell","hello","helo"

, "ho","hoe","hole","lo","oe","oh","ole"]

http://www.cis.upenn.edu/~cis194/extras/02-dict/HW02.hs
http://www.cis.upenn.edu/~cis194/extras/02-dict/Words.hs

cis 194: homework 2 5

This function will likely require a helper function in order to pro-
cess all of the elements in allWords.

Exercise 3 Most plays in Scrabble do not build completely fresh
words from the tiles in one’s hand. All Scrabble plays (except the
first) have to build on existing tiles. Often, there is a place that a
player wants to make a word, but that player must figure out if a
word can fit. Your next functions will help to solve this part of the
problem.

First, we must have the idea of a template. A template is a string
containing some letters and some question marks. The question
marks represent open spaces on the board that will get filled in by
the letter in a player’s hand. The letters in the template represent
letters that already appear on the board. They must appear in exactly
the same positions in the final words produced. So, the template
??r? represents a board position where the third letter of a four-letter
word must be r. If you have the letters available, you could play care

or burp there (among many other words).
Write a function wordFitsTemplate that checks to see if a given

word matches a template, given a set of tiles available:

wordFitsTemplate :: Template -> Hand -> String -> Bool

Example: wordFitsTemplate "??r?" [’c’,’x’,’e’,’a’,’b’,’c’,’l’] "care" == True

Example: wordFitsTemplate "??r?" [’c’,’x’,’e’,’w’,’b’,’c’,’l’] "care" == False

Example: wordFitsTemplate "??r?" [’c’,’x’,’e’,’a’,’b’,’c’,’l’] "car" == False

Example: wordFitsTemplate "let" [’x’,’x’] "let" == True

Exercise 4 Now, using that function, write another one that pro-
duces all valid Scrabble words that match a given template using a
hand of available tiles. This will be similar to wordsFrom.

wordsFittingTemplate :: Template -> Hand -> [String]

Example: wordsFittingTemplate "??r?" [’c’,’x’,’e’,’a’,’b’,’c’,’l’] ==

["acre","bare","carb","care","carl","earl"]

Exercise 5 Now we must think about scoring, as not all words in
Scrabble are created equal! The Words module, along with providing

cis 194: homework 2 6

allWords, provides scrabbleValue :: Char -> Int that gives the
point value of any letter. Use that function to write a new function
that gives the point value of any word.

scrabbleValueWord :: String -> Int

Example: scrabbleValueWord "care" == 6

Example: scrabbleValueWord "quiz" == 22

Exercise 6 You will use the scrabbleValueWord function to write a
filtering function that takes a list of words and selects out only those
that have the maximum point value. Note that there may be many
words tied for the most points; your function must return all of them.

bestWords :: [String] -> [String]

Example: bestWords (wordsFittingTemplate "??r?" [’c’,’x’,’e’,’a’,’b’,’c’,’l’]) == ["carb"]

Example: bestWords ["cat", "rat", "bat"] == ["bat","cat"]

Example: bestWords [] == []

A helper function with an accumulator may come in handy here,
but there are other possible solutions.

Exercise 7 A Scrabble board is not a completely blank canvas. There
are four kinds of special squares: double-letter, triple-letter, double-
word, and triple-word. A letter played on a double- or triple-letter
square gets its point value multiplied, and if any letter is played
on a double- or triple-word square, the whole word’s value gets
multiplied. The effects multiply with each other, as appropriate. So,
a play on both a double-word and a triple-word gets multiplied by 6.
If one tile is on a double-letter and another is on a double-word, then
that letter’s value is multiplied by 4.

To represent these special squares, we use a new type STemplate

(the S is for "square"). A stemplate is like a template, but it uses ’D’

and ’T’ to mark double- and triple-letter squares, respectively, and
it uses ’2’ and ’3’ to mark double- and triple-word squares, respec-
tively. Thus, the stemplate ?e??3 represents a place on the board
where there is room for a 5-letter word, the second letter of which is
an e, and the last letter of which falls on a triple-word square.

Write a function scrabbleValueTemplate that computes the value
of playing a given word on a given template. In this function, you
may assume that the word actually matches the template.

cis 194: homework 2 7

scrabbleValueTemplate :: STemplate -> String -> Int

Example: scrabbleValueTemplate "?e??3" "peace" == 27

Example: scrabbleValueTemplate "De?2?" "peace" == 24

Example: scrabbleValueTemplate "??Tce" "peace" == 11

Challenge: Extensible templates

(This problem is not worth credit, but is included for fun.)
The templates used above are a little silly, given the way Scrabble

works. For example, if you could use the template ?e???, then you
could certainly use ?e?? and leave the last square blank.

Write a version of wordFitsTemplate that does not require that the
word takes up the entire template.

	Local variables
	Haskell Layout
	Accumulators
	Scrabble
	Challenge: Extensible templates

