
CIS 194: Homework 3
Due Friday, September 19, 2014

Something has gone terribly wrong!

• Files you will need: Log.hs, error.log, sample.log

• Files you should submit: LogAnalysis.hs

Log file parsing

We’re really not sure what happened, but we did manage to recover
the log file error.log. It seems to consist of a different log message
on each line. Each line begins with a character indicating the type of
log message it represents:

• ’I’ for informational messages,

• ’W’ for warnings, and

• ’E’ for errors.

The error message lines then have an integer indicating the severity
of the error, with 1 being the sort of error you might get around to
caring about sometime next summer, and 100 being epic, catastrophic
failure. All the types of log messages then have an integer time stamp
followed by textual content that runs to the end of the line. Here is a
snippet of the log file including an informational message followed
by a level 2 error message:

cis 194: homework 3 2

I 147 mice in the air, I’m afraid, but you might catch a bat, and

E 2 148 #56k istereadeat lo d200ff] BOOTMEM

It’s all quite confusing; clearly we need a program to sort through
this mess. We’ve come up with some data types to capture the struc-
ture of this log file format:

data MessageType = Info

| Warning

| Error Int

deriving (Show, Eq)

type TimeStamp = Int

data LogMessage = LogMessage MessageType TimeStamp String

deriving (Show, Eq)

(The mysterious deriving (Show, Eq) annotations allow these
types to be printed in a GHCi session and allow equality comparison
among member of the types. We’ll learn more about these later.)

We’ve provided you with a module Log.hs containing these data
type declarations, along with some other useful functions. Download
Log.hs and put it in the same folder where you intend to put your
homework assignment. Please name your homework assignment
LogAnalysis.hs (or .lhs if you want to make it a literate Haskell
document). The first few lines of LogAnalysis.hs should look like
this:

{-# OPTIONS_GHC -Wall #-}

module LogAnalysis where

import Log

which sets up your file as a module named LogAnalysis, and im-
ports the module from Log.hs so you can use the types and functions
it provides.

Don’t reinvent the wheel! (That’s so last week.) Use Prelude func-
tions to make your solution as concise, high-level, and functional as
possible. Functions which may (or may not) be useful to you include
lines, words, unwords, take, drop, (.), map, and filter.

Exercise 1 The first step is figuring out how to parse an individual
message. However, perhaps the file is corrupted even worse than we
thought: maybe individual lines are garbled. So, we can’t be sure that
a line from the input will be a valid LogMessage. Thus, we define a
type (included in the provided Log.hs) to allow for the possibility of
failure:

cis 194: homework 3 3

data MaybeLogMessage = ValidLM LogMessage

| InvalidLM String

deriving (Show, Eq)

As you can see, a MaybeLogMessage either contains a proper LogMessage
or just an unformatted string.

Now, you can define a function

parseMessage :: String -> MaybeLogMessage

which parses an individual line from the log file. For example,

parseMessage "E 2 562 help help"

== ValidLM (LogMessage (Error 2) 562 "help help")

parseMessage "I 29 la la la"

== ValidLM (LogMessage Info 29 "la la la")

parseMessage "This is not in the right format"

== InvalidLM "This is not in the right format"

There is a very useful function toward the bottom of Log.hs that
you will need to use here!

Exercise 2 It’s not terribly hard to make parseMessage work over all
the lines in a file. But, doing so would produce a [MaybeLogMessage],
where we really just want a [LogMessage] for further processing –
let’s throw out the invalid messages.

Write a function

validMessagesOnly :: [MaybeLogMessage] -> [LogMessage]

that throws out invalid messages.

Exercise 3 Now, we can put these pieces together to define

parse :: String -> [LogMessage]

which parses an entire log file at once and returns its contents as a
list of LogMessages.

To test your function, use the testParse function provided in the
Log module, giving it as arguments your parse function, the number
of lines to parse, and the log file to parse from (which should also be
in the same folder as your assignment). For example, after loading
your assignment into GHCi, type something like this at the prompt:

testParse parse 10 "error.log"

cis 194: homework 3 4

Putting the logs in order

Unfortunately, due to the error messages being generated by multiple
servers in multiple locations around the globe, a lightning storm, a
failed disk, and a bored yet incompetent programmer, the log mes-
sages are horribly out of order. Until we do some organizing, there
will be no way to make sense of what went wrong!

Exercise 4 Any sorting function is going to need to compare two
LogMessages to see which one should come first. But, since we’ve
just created the LogMessage type, there is no way for the computer
to know how to compare two of them. We must write a comparison
function!

In general, comparing two items for ordering can yield one of
three results: less-than, equal-to, or greater-than. Haskell codifies this
idea as a datatype

data Ordering = LT | EQ | GT

Ordering is part of the Prelude (the set of things automatically in-
cluded), so its definition doesn’t appear in Log.hs nor should it ap-
pear in your code.

Define a function

compareMsgs :: LogMessage -> LogMessage -> Ordering

that compares two LogMessages based on their timestamps.
Here are some examples:

compareMsgs (LogMessage Warning 153 "Not a speck of light is showing, so the danger must be growing...")

(LogMessage Info 208 "the Weighted Companion Cube cannot talk")

== LT

compareMsgs (LogMessage (Error 101) 2001 "My God! It’s full of stars!")

(LogMessage Info 2001 "Daisy, Daisy, give me your answer do.")

== EQ

Exercise 5 Now that you have said how to compare messages, you
can sort the list. Write a function

sortMessages :: [LogMessage] -> [LogMessage]

that sorts the list of messages. Do not write out a full sorting algo-
rithm! Instead, poke around in the Data.List module looking for a
very convenient function!

cis 194: homework 3 5

Log file postmortem

Exercise 6 Now that we can sort the log messages, the only thing
left to do is extract the relevant information. We have decided that
“relevant” means “errors with a severity of at least 50”.

Write a function

whatWentWrong :: [LogMessage] -> [String]

which takes an unsorted list of LogMessages, and returns a list of the
messages corresponding to any errors with a severity of 50 or greater,
sorted by timestamp. (Of course, you can use your functions from the
previous exercises to do the sorting.)

For example, suppose our log file looked like this:

I 6 Completed armadillo processing

I 1 Nothing to report

E 99 10 Flange failed!

I 4 Everything normal

I 11 Initiating self-destruct sequence

E 70 3 Way too many pickles

E 65 8 Bad pickle-flange interaction detected

W 5 Flange is due for a check-up

I 7 Out for lunch, back in two time steps

E 20 2 Too many pickles

I 9 Back from lunch

This file is provided as sample.log. There are four errors, three of
which have a severity of greater than 50. The output of whatWentWrong
on sample.log ought to be

["Way too many pickles"

, "Bad pickle-flange interaction detected"

, "Flange failed!"

]

You can test your whatWentWrong function with testWhatWentWrong,
which is also provided by the Log module. You should provide
testWhatWentWrong with your parse function, your whatWentWrong
function, and the name of the log file to parse.

Exercise 7 Take a look at the output from a run of testWhatWentWrong.
For both log files provided, a certain condiment seems to stand out
(different condiments for the different files!). It might be more infor-
mative to see both warnings and errors that mention that particular
condiment.

cis 194: homework 3 6

Define a function

messagesAbout :: String -> [LogMessage] -> [LogMessage]

that filters a list of LogMessages to include only those messages that
contain the string provided. Make your function case-insensitive, so that
"relish" matches "Relishsign detected!!".

Exercise 8 We now wish to see a combined output, with both all
high-severity messages and all messages containing a certain key-
word included. Write a function

whatWentWrongEnhanced :: String -> [LogMessage] -> [String]

that makes a list including both all high-severity errors and all mes-
sages containing the provided string. Note that you will likely have
to edit (that is, refactor) previously-written code to be able to do this
without repeating yourself much. To test your function, run some-
thing like this in GHCi:

LogAnalysis> testWhatWentWrong parse (whatWentWrongEnhanced "relish") "error.log"

(Why does it work to pass only one parameter to whatWentWrongEnhanced?)
You get kudos if you can manage to use the following function:

(|||) :: (LogMessage -> Bool) -> (LogMessage -> Bool) -> LogMessage -> Bool

(|||) f g x = f x || g x -- (||) is Haskell’s ordinary "or" operator

	Log file parsing
	Putting the logs in order
	Log file postmortem

