
FUNCTIONS
CIS 194



FUNCTIONS

BUT FIRST…

▸ Installed Haskell? 

▸ hw1 

▸ Waitlist 

▸ Lingering questions from lec1



SYNTAX



SYNTAX

DEFINING FUNCTIONS

▸ name arg1 arg2 … argN = expression 

▸ alwaysOne iAmNotUsed = 1

▸ double x = x + x

▸ hello name = "Hello, " ++ name ++ "!"

▸ smaller x y = if x <= y then x else y



SYNTAX

INVOKING FUNCTIONS

▸ name arg1 arg2 … argN 

▸ double 5 —> 10

▸ hello "CIS 194!" —> "Hello, CIS 194!"

▸ smaller "abc" "xyz" —> "abc"



SYNTAX

NESTING FUNCTION CALLS

▸ double (double 5) —> 20

▸ smaller (alwaysOne "notTwo") (double 0) —> 0

▸ double double 5



SYNTAX

LAMBDAS

▸ \arg1 arg2 … argN -> expression 

▸ \x -> x + 1

▸ \str1 str2 -> str1 ++ " " ++ str2



BIG IDEAS



BIG IDEAS

KEY TAKEAWAYS

▸ Small functions can be combined to do complex things 

▸ Functions transform data 

▸ Functions are themselves data



BIG IDEAS

LOTS OF SMALL FUNCTIONS —> BIG THING

isTeen x = 13 <= x && x <= 19
getName x = fst x 
getAge x = snd x

head (
  map getName (
    filter (\person -> isTeen (getAge person)) 
    [ ("Sue", 10), ("Bob", 20), ("Alex", 14) ]
  )
)
—> "Alex"



BIG IDEAS

FUNCTIONS TRANSFORM DATA

▸ Functions are pure 

▸ You provide data 

▸ You get back new data 

▸ addOne x = x + 1

▸ isEven x = x `mod` 2 == 0



BIG IDEAS

FUNCTIONS ARE DATA

▸ “First-class values” 

▸ Can pass function as an arg to another function 

▸ Functions can return other functions 

▸ Can be stored in data structures



FUNCTIONS

FUNCTIONS ARE DATA

▸ applyTwice f x = f (f x)

▸ applyTwice hello "CIS 194"                  
—> "Hello, Hello, CIS 194!!”

▸ Lingo: applyTwice is a “higher-order”  function



PARTIAL 
APPLICATION



ALL FUNCTIONS IN HASKELL 
TAKE ONLY ONE ARGUMENT

The Dirty Truth About Functions

PARTIAL APPLICATION



PARTIAL APPLICATION

DON’T BELIEVE ME?

▸ appendToMyself str = str ++ str

▸ appendToMyself = \str -> str ++ str

▸ add x y = x + y

▸ add x = \y -> x + y

▸ add = \x -> (\y -> x + y)



PARTIAL APPLICATION

SO WHAT IS PARTIAL APPLICATION THEN?

▸ Well, really just normal function application! 

▸ Call function and get back another function 

▸ You can think of as not providing all arguments



FUNCTION 
COMPOSITION



FUNCTION COMPOSITION

COMPOSING FUNCTIONS

head (
  map getName (
    filter (\person -> isTeen (getAge person)) 
    [ ("Sue", 10), ("Bob", 20), ("Alex", 14) ]
  )
)

But is this easy to read?



FUNCTION COMPOSITION

TWO USEFUL OPERATORS

Function composition 

f . g = \x -> f (g x)

Function application 

f $ x = f x



FUNCTION COMPOSITION

USING COMPOSITION AND APPLICATION OPERATORS

▸ f (g x)         becomes f . g $ x

▸ f (g (h x))     becomes f . g . h $ x

▸ f (g (h (i x))) becomes f . g . h . i $ x

▸ length . filter even . map numberOfFactors



FUNCTION COMPOSITION

COMPOSING FUNCTIONS

head . map getName . filter (\person -> 
  isTeen (getAge person)) $
  [ ("Sue", 10), ("Bob", 20), ("Alex", 14) ]

Better? At least less parens to match up.



FUNCTION COMPOSITION

POINT-FREE STYLE

▸ foo x = f x

▸ becomes foo = f

▸ foo x = f . g . h $ x 

▸ becomes foo = f . g . h

▸ But can quickly get out of hand… 

▸ \a b c -> a*b+2+c

▸ ((+) .) . flip flip 2 . ((+) .) . (*)



RECURSION



RECURSION

HOW CAN WE IMPLEMENT THESE?

▸ factorial 5 —> 120

▸ repeatIt 4 "ha" —>"hahahaha"



RECURSION

OUR FIRST RECURSIVE FUNCTIONS

factorial n =
  if n == 0 then 1
  else n * factorial (n - 1)

repeatIt n snippet = 
  if n <= 0 then ""
  else snippet ++ repeatIt (n - 1) snippet



RECURSION

TIPS FOR RECURSION

▸ Base case and recursive case 

▸ Don’t think too hard about base case 

▸ Treat recursive call like oracle



RECURSION

ONE MORE EXAMPLE

map f xs =
  if null xs then
    []
  else
    f (head xs) : map f (tail xs)



CASE PATTERNS



CASE PATTERNS

REVISITING AN OLD FRIEND

factorial n =
  if n == 0 then 1
  else n * factorial (n - 1)

factorial' 0 = 1
factorial' n = n * factorial (n - 1)

Which version do you like better?



CASE PATTERNS

WHAT HAPPENS WHEN I FORGET A CASE?

countdown n = countdown (n - 1)
tMinusTen = countdown 10

Oops! 

httpCodeIsOk 200 = True
succeeded = httpCodeIsOk 404

Oops! (But for a different reason.)



PARTIAL FUNCTIONS



PARTIAL FUNCTIONS

MODELING PARTIAL FUNCTIONS

▸ When your function does not work on all inputs 

▸ Wrap output in Maybe 

▸ Restrict your input 

▸ Return a default value 

▸ Or… crash!



PARTIAL FUNCTIONS

CRASHING

▸ Never write functions that crash 

▸ Avoid using Prelude functions that crash 

▸ Notably head and tail


