CIS 194: Homework 3
Due Wednesday, February 11, 2015

THE TNTERPRETER

Interpreters

An interpreter is a program that takes another program as an input
and evaluates it. Many modern languages such as Java®, Javascript,
Python, and PHP are interpreted. Although interpreted languages are
generally slower than compiled ones such as Haskell, OCaml, and C,
they offer many advantages such as platform independence.

Haskell’s type system makes it an excellent mefalanguage. A met-
alanguage is a language that is used to reason about a different lan-
guage. In this assignment, you will implement an interpreter for a
simple imperative language in Haskell.

Meet SImPL

SImPL is the Simple Imperative Programming Language that you
will be interpreting. This language is comprised of seven kinds of
statements: assignments, increments, if statements, while loops, for
loops, sequences, and skips. The only kinds of values that exists in
SImPL are integers. Integers can be represented in expressions as
literals (ie -1, o, 5), variables, or the result of a computation involving
two sub-expressions. An example SImPL program that calculates the
value of B to the power of E is:

* Java is first compiled to bytecode
which is then interpreted by the Java
Virtual Machine



Out := 1;

for (I :=0; I <E; I++) {
OQut := Out * B

}

At the end of the program’s execution, the value of B to the power

E is stored in the variable Out. This SImPL program is nicely read-
able by humans, however is not so easy for Haskell to work with.

In Haskell, we will represent SImPL programs using Abstract Syntax
Trees or ASTs. An AST is just a Haskell datatype that represents the
structure of a piece of code. The datatypes that we will be working
with in this assignment are defined in HW03.hs. The SImPL program
above could be represented in Haskell as follows:

Sequence
(Assign "OQut" (Val 1))
(For (Assign "I" (Val 0))
(Op (var "I") Lt (Var "E"))
(Incr "I")
(Assign (Var "Out") (Op (var "Out") Times (Var "B"))))

Before you continue, make sure you understand the correspondence
between the SImPL program and its representation in Haskell. All of
this assignment will be based on working with and manipulating the
AST.

Exercise 1 Before we can start evaluating Expressions and Statements
we need some way to store and look up the state of a variable. We
define a State to be a function of type String -> Int. This makes it
very easy to look up the value of a variable; to look up the value of

"A" in state, we simply call state "A". Whenever we assign a vari-
able, we want to update the program State. Implement the following
function:

extend :: State -> String -> Int -> State

Hint: You can use the input State as a black box for variables other
than the one you are assigning.

Example:

let st’ = extend st "A" 5
in st’ "A" == 5

In addition to the ability to extend States, we need to have an
empty State that we can use to evaluate programs where no vari-
ables are assigned. In the empty State, it might make sense to throw

CIS 194: HOMEWORK 3 2



CIS 194: HOMEWORK 3 3

an exception when you try to access a variable that has not been de-

fined. Unfortunately, SImPL has no notion of exceptions®. For this 2SImPL has no type errors either; ev-
erything is an integer, so typechecking

reason, we will define the empty State to set all variables to 0. De- oY
isn’t necessary!

fine the empty State:

empty :: State

Example:

empty "A" == 0

Exercise 2 We are now ready to evaluate expressions! This can

be implemented as a fairly straightforward recursive function. The
value that an Expression evaluates to depends on the state of the
variables that appear in the Expression. For this reason, a State
must be provided along with the Expression that is being evaluated.
Implement the function:

evalE :: State -> Expression -> Int

Note: some of the binary operators (Bops) in SImPL are Int -> Int -> Int
functions, but others have type Int -> Int -> Bool. Since SImPL

only has integer types, we need to modify these functions to return

Ints. We will do so by returning 0 in place of False and 1 in place of
True.

Example:

evalE empty (Val 5) ==

Example:

evalE empty (Op (Val 1) Eql (Val 2)) ==

Exercise 3 It turns out that SImPL isn’t so simple after all. The
syntax of SImPL contains some repetition. For example, Incrs are
just special cases of Assigns. Syntax like this makes it easier for pro-
grammers to reason about code, however it makes the internal repre-
sentation of the language more complicated. This is called Syntactic

Sugar3. SImPL is a little too sweet for my taste, so before we evaluate 3 Haskell has plenty of Syntactic Sugar.

We will learn much more about this

. . when we learn about Monads in a few
A DietStatement is a new datatype that we will use to represent weeks. Before Haskell gets compiled to

desugared SImPL Statements. You may notice that DietStatements native machine code, it goes through an

intense desugaring process. The result

is a language called GHC Core.

SImPL Statements we are going to desugar them.

are very similar to Statements. In fact, the DietStatement type is the
same as the Statement type with two constructors removed: Incr and



For. This is because Incr is Syntactic Sugar for an assignment and
For is Syntactic Sugar for a while loop.
For Loop in SImPL

for (A :=0; A< N; A++) {...}
For Loop represented as an AST

For (Assign "A" (Val 0)) (Op (var "A") Lt (Var "N")) (Incr
"AY) (..))
Explanation

e Initialization: Executed once at the very beginning

® Loop Condition: Expression dictating whether or not the body of
the loop should be executed.

* Update: Executed every iteration after the body of the loop

Now, implement the following function:

desugar :: Statement -> DietStatement

Example:

desugar (Incr "A") == DAssign "A" (Op (Var "A") Plus (Val 1))

Exercise 4 In this exercise, you will write a function that evaluates
desugared Statements. Unlike Expressions, Statements do not eval-
uate to a single value. Instead, they perform actions that mutate the
initial State. Since we cannot actually mutate the State in Haskell,
we will return a new State that is the result of evaluating the pro-
gram. Implement the function:

evalSimple :: State -> DietStatement -> State

Note: If statements and While loops both represent conditionals as
an Expression. Since Expressions in SImPL are integers, we will
consider 0 to be False and every other value to be True*.

Example:

let s = evalSimple empty (DAssign "A" (Val 10))
in s "A" == 10

We also want to be able to run programs that have not already
been desugared. Implement the function:

run :: State -> Statement -> State

Note: run should be defined in terms of desugar and evalSimple. It
should not be implemented from scratch.

CIS 194: HOMEWORK 3 4

4 This is the standard convention in C.
There is no boolean type in C either.



CIS 194: HOMEWORK 3 5

Running Programs

Congratulations! You have written an interpreter for a simple im-
perative language. But what good is an interpreter without any pro-
grams to test it on? We have provided three programs to test your
code on: factorial, square root, and fibonacci.

You can use these programs to test your interpreter. In each case,
the input is assumed to be assigned to the variable "In" and the
output is assign to "Out". So, for example, if you wanted to run the
factorial program with input 4, you should run the program with a
State that binds the variable "In" to 4.

Example:

let s = run (extend empty "In" 4) factorial
in s "Qut" == 24



	Interpreters

