
CIS 194: Homework 8
Due Wednesday, 8 April

Propositional Logic

In this section, you will prove some theorems in Propositional Logic,
using the Haskell compiler to verify your proofs. The Curry-Howard
isomorphism states that types are equivalent to theorems and pro-
grams are equivalent to proofs. There is no need to run your code or
even write test cases; once your code type checks, the proof will be
accepted!

Implication

We will begin by defining some logical connectives. The first logical
connective is implication. Luckily, implication is already built in to
the Haskell type system in the form of arrow types. The type p -> q

is equivalent to the logical statement P → Q. We can now prove a
very simple theorem called Modus Ponens. Modus Ponens states that
if P implies Q and P is true, then Q is true. It is often written as:

P → Q
P
Q

Figure 1: Modus Ponens

We can write this down in Haskell as well:

modus_ponens :: (p -> q) -> p -> q

modus_ponens pq p = pq p



cis 194: homework 8 2

Notice that the type of modus_ponens is identical to the Prelude
function ($). We can therefore simplify the proof1: 1 This is a very interesting observation.

The logical theorem Modus Ponens is
exactly equivalent to function applica-
tion!

modus_ponens :: (p -> q) -> p -> q

modus_ponens = ($)

Disjunction

The disjunction (also known as “or”) of the propositions P and Q
is often written as P ∨ Q. In Haskell, we will define disjunction as
follows:

-- Logical Disjunction

data p \/ q = Left p

| Right q

The disjunction has two constructors, Left and Right. The Left

constructor takes in something of type p and the Right constuctor
takes in something of type q. This means that a proposition of type
p \/ q can be either a p or a q where p and q are themselves propo-
sitions. This type is actually identical to Haskell’s Either, but we
redefine it here with a nicer syntax.

Conjunction

Now let’s take a look at conjunctions (“and”). In logic, the conjunc-
tion of P and Q is written as P ∧ Q. In Haskell it is written as:

Figure 2: Schoolhouse Rock made an
episode about conjunctions which
featured the phrase “Conjunction
junction, what’s your function?” Little
did they know that conjunctions are
implemented as a data type, not a
function.

-- Logical Conjunction

data p /\ q = Conj p q

Unlike disjunction, conjunction only has one constructor. This is
because there is only one way to have a conjunction proposition; both
p and q must be true. This type is equivalent to Haskell’s tuple.

Bottom and Logical Negation

In order for a logic to be consistent, there must be some proposition
that is not provable. This is usually written as ⊥ (pronounced bot-
tom). In our Haskell formulation of propositional logic, we will call it
False and define it as follows.

data False

False is a datatype that has no constructors. This means that the type
False in uninhabited; it is not provable since there is no way to write a
program of type False. Now that we have a notion of False, we can
define the logical connective “not” (written as ¬P):



cis 194: homework 8 3

type Not p = p -> False

The Not type is really just an alias for p -> False. In other words,
if p were true, then False would also be true. Now, let’s prove an-
other theorem, Modus Tollens. Modus Tollens states that if P imples
Q and Q is not true, then P is not true. In logic, it is written as:

P → Q
¬Q
¬P

Figure 3: Modus Tollens

Now, let’s look at the Haskell version of Modus Tollens:

modus_tollens :: (p -> q) -> Not q -> Not p

modus_tollens pq not_q = not_q . pq

This is a bit more involved than the proof of Modus Ponens above.
Recall that Not p is really just a handy syntax for p -> False. This
means that the proof of Modus Tollens should be a function that
takes in an inhabitant of the proposition p and derives a contradiction
from it. This is not too hard to do since we assume that p implies q

and q implies False.

If and Only If

We define one last logical connective: if and only if. If and only if is
also known as as the biconditional connective since it is equivalent to
P → Q and Q → P. If and only if is usually written as P ↔ Q. In
Haskell we use the following syntax:

type p <-> q = (p -> q) /\ (q -> p)

Figure 4: The Law of Excluded Middle
as explained by the great logician,
Calvin

Axioms and Examples

Although Haskell’s type system is very powerful, it is not quite good
enough to prove everything that we will need. For this reason, we
will need some axioms, or propositions that we assume without
proof. We will use admit to denote that we take a proposotion to be
true. In order to get this to typecheck, we define admit as follows:



cis 194: homework 8 4

admit :: assumption

admit = admit

admit is simply an infinite loop, but it can have any type! This is the
same way that undefined is written in the Haskell Prelude.

We can now write down the Law of Excluded Middle:

P ∨ ¬P Figure 5: Law of Excluded Middle

This states that some proposition P is either true or it is false. Haskell’s
type system cannot prove this, so we leave it as an admitted axiom:

excluded_middle :: p \/ Not p

excluded_middle = admit

A few more propositions are defined in HW08.hs. Try to under-
stand them before beginning the exercises. In particular, there is a
fully annotated proof of the Material Implication Theorem.

(P → Q) ↔ (¬P ∨ Q) Figure 6: Material Implication

This theorem states that implication can be equivalently written as a
disjunction.

Exercise 1 In this exercise you will prove Disjunctive Syllogism. In
logic, we can write this theorem as follows:

P ∨ Q
¬P
Q

Figure 7: Disjunctive Syllogism

Basically, it states that if one of P or Q is true, but we know that P is
false, then Q must be true. The proof is relatively straighforward; you
should do case analysis on the proposition P ∨ Q. In the left case, you
can derive a contradiction and in the right case, you simply know
that Q is true.

disjunctive_syllogism :: (p \/ q) -> Not p -> q

Exercise 2 Prove the Composition Theorem:

(P → Q) ∨ (P → R)
P
Q ∨ R

Figure 8: Composition

The proof of this theorem is again by case analysis on the disjunc-
tion hypothesis. The left case in the hypothesis corresponds to the



cis 194: homework 8 5

left case in the conclusion and the right case in the hypothesis corre-
sponds to the right case in the conclusion.

Exercise 3 Prove the Transposition Theorem:

(P → Q) ↔ (¬Q → ¬P) Figure 9: Transposition

The proof of Transposition has two parts; the forward direction and
the backwards direction. In the forward direction, you are essentially
proving:

P → Q
¬Q
¬P

Figure 10: Forward Direction of Trans-
position

This is identical to a theorem that we already proved! The backwards
direction takes a bit more work

¬Q → ¬P
P
Q

Figure 11: Backward Direction of
Transposition

This can be proven using an application of Modus Tollens, but with
a slight catch. You will have to get P into the form ¬¬P before you
can use Modus Tollens and then you will have to remove the double
negation at the end.

transposition :: (p -> q) <-> (Not q -> Not p)

Exercise 4 Prove one of De Morgan’s Laws

¬(P ∨ Q) ↔ (¬P ∧ ¬Q) Figure 12: De Morgan’s Law

Again, you will have to prove the forward and backward directions.
Recall that ¬P is defined as P → ⊥ and you can construct a proposi-
tion of type P ∨ Q with either a P or a Q.

de_morgan :: Not (p \/ q) <-> (Not p /\ Not q)

Natural Numbers

The natural numbers, often denoted as the set N = {0, 1, 2, . . .}, are
simply the non-negative integers. In class we defined natural num-
bers and used them to encode the length of a vector in its type. In



cis 194: homework 8 6

this way, we promoted the data type Nat to be a kind and the con-
structors S and O were promoted to types. This is great for encoding
numbers at the type-level, however we would also like to encode nu-
merical values at the expression-level. In particular, we want numbers
whose types are equivalent to their values. We can achieve this using
the following Generalized Algebraic Data Type:

data Forall n where

Zero :: Forall O

Succ :: Forall n -> Forall (S n)

This is similar to the GADT that we defined for vectors, except that
Succ (the equivalent of Cons) does not take in a value, only a size. We
name this type Forall because it is notationally convenient in proofs,
however for all intents and purposes, a value of type Forall n is a
number.

Figure 13: Portrait of the Proof Gen-
eral. The Proof General verifies proofs
written in several langauages including
Coq, LEGO, and Isabelle. Unfortu-
nately, he does not work in Haskell.

Before we can write down some proofs, we also need to define a
notion of equality. Equality is defined using a GADT:

data (n :: Nat) == (m :: Nat) where

Refl :: n == n

This defines equality for two types, n and m, of kind Nat. Notice that
there is only one constructor and it has type n == n. This is because
the only way for two Nats to be equal is if they are the same. In other
words, the equality relation is reflexive.

We also define the less than relation as a GADT with two construc-
tors:

data n < m where

LT_Base :: O < S n

LT_Rec :: n < m -> S n < S m

Less than is defined inductively. The base case states that zero is less
than any number that is the successor of some other number. The
recursive case is constructed using a witness that n is less than m and
produces a proof that the successor of n is less than the successor of
m.

Before you start doing the exercises in this section, read through
the annotated proof of the “Not Equal implies Greater Than or Less
Than” theorem. This theorem states that:

∀n ∈ N, ∀m ∈ N, n 6= m → (n < m ∨ n > m)

and in Haskell it is written as:

neq_gt_lt :: Forall n -> Forall m ->

n /= m -> (n < m) \/ (n > m)



cis 194: homework 8 7

The reason why we need the Forall type is shown here. We have
to do induction on n and m in order to complete the proof. Since the
number Forall n has the same type-level numerical value as the
n that shows up elsewhere in the theorem, this gives us a way to
manipulate the value of the type at the expression level. In particular,
it allows us to specify the values of n and m in recursive calls.

Exercise 5 Notice how the theorem O + n == n is trivial to prove
whereas n + O == n requires an inductive proof. The reason for this
is that O + n == n follows directly from the definition of the addition
type family.

Look at the proof of n_plus_0. The conclusion comes after a case
match where we match Refl and then return Refl. This seems silly,
why couldn’t we skip the match and just return n_plus_0 n?

The reason is that the two Refl proof objects have different types,
however the Haskell compiler needs to see that the result of the re-
cursive call is a Refl before it can verify that the type of the returned
Refl is correct.

Your task is to prove a similar theorem. The structure of this proof
is almost identical to n_plus_0.

add_zero :: Forall n -> O + n == n + O

Exercise 6 Now, prove the property that ∀n, n < n + 1. This theo-
rem also has a straightforward proof by induction on n.

n_lt_sn :: Forall n -> n < S n

Exercise 7 The last two exercises will use new relations for even
an odd numbers. Similar to the less than relation, these relations are
defined inductively. The even relation states that zero is even, and if
n is even, then S (S n) is even. The odd relation is the same except
that it has a base case on 1 instead of 0.

Provided for you is a proof that the successor of an even number
is odd. Unlike the previous proofs that were done by induction on n,
this proof is by induction on the even judgement. Your job is to prove
that the successor of an odd number is even.

odd_plus_one :: Odd n -> Even (S n)

Exercise 8 Finally, prove that for any number n, n + n is even.
This theorem requires a proof by induction on n. You may find the
succ_sum lemma helpful!

double_even :: Forall n -> Even (n + n)


	Propositional Logic
	Natural Numbers

