
CIS 194: Homework 11
Due Thursday, April 5

• Files you should submit: Risk.hs. You should take the version we
have provided and add your solutions to it.

Risk

The game of Risk involves two or more players, each vying to “con-
quer the world” by moving armies around a board representing the
world and using them to conquer territories. The central mechanic of
the game is that of one army attacking another, with dice rolls used
to determine the outcome of each battle.

The rules of the game make it complicated to determine the like-
lihood of possible outcomes. In this assignment, you will write a
simulator which could be used by Risk players to estimate the proba-
bilities of different outcomes before deciding on a course of action.

The Rand StdGen monad

Since battles in Risk are determined by rolling dice, your simula-
tor will need some way to access a source of randomness. Many
languages include standard functions for getting the output of a
pseudorandom number generator. For example, in Java one can write

Random randGen = new Random();

int dieRoll = 1 + randGen.nextInt(6);

to get a random value between 1 and 6 into the variable dieRoll.
It may seem like we can’t do this in Haskell, because the output of
randGen.nextInt(6) may be different each time it is called—and
Haskell functions must always yield the same outputs for the same
inputs.

However, if we think about what’s going on a bit more carefully,
we can see how to successfully model this in Haskell. The Java code
first creates a Random object called randGen. This represents a pseu-
dorandom number generator, which remembers a bit of state (a few
numbers), and every time something like nextInt is called, it uses
the state to (deterministically) generate an Int and then updates the
state according to some (deterministic) algorithm. So the numbers
which are generated are not truly random; they are in fact completely
deterministic, but computed using an algorithm which generates
random-seeming output. As long as we initialize (seed) the generator
with some truly random data, this is often good enough for purposes
such as simulations.



cis 194: homework 11 2

In Haskell we can cerainly have pseudorandom number generator
objects. Instead of having methods which mutate them, however,
we will have functions that take a generator and return the next
pseudorandom value along with a new generator. That is, the type
signature for nextInt would be something like

nextInt :: Generator -> (Int, Generator)

However, using nextInt would quickly get annoying: we have to
manually pass around generators everywhere. For example, consider
some code to generate three random Ints:

threeInts :: Generator -> ((Int, Int, Int), Generator)

threeInts g = ((i1, i2, i3), g’’’)

where (i1, g’) = nextInt g

(i2, g’’) = nextInt g’

(i3, g’’’) = nextInt g’’

Ugh! Fortunately, there is a much better way. The MonadRandom pack-
age1 defines a monad which encapsulates this generator-passing be- 1 http://hackage.haskell.org/

package/MonadRandomhavior. Using it, threeInts can be rewritten as

threeInts :: Rand StdGen (Int, Int, Int)

threeInts =

getRandom >>= \i1 ->

getRandom >>= \i2 ->

getRandom >>= \i3 ->

return (i1,i2,i3)

The type signature says that threeInts is a computation in the
Rand StdGen monad which returns a triple of Ints. Rand StdGen

computations implicitly pass along a pseudorandom generator
of type StdGen (which is defined in the standard Haskell library
System.Random).

http://hackage.haskell.org/package/MonadRandom
http://hackage.haskell.org/package/MonadRandom


cis 194: homework 11 3

Exercise 1
Type cabal install MonadRandom at a command prompt (not the

ghci prompt) to download and install the MonadRandom package from
Hackage. Then visit the documentation (http://hackage.haskell.
org/package/MonadRandom). Take a look at the Control.Monad.Random

module, which defines various ways to “run” a Rand computation;
in particular you will eventually (at the very end of the assign-
ment) need to use the evalRandIO function. Take a look also at the
Control.Monad.Random.Class module, which defines a MonadRandom

class containing methods you can use to access the random genera-
tor in a Rand computation. For example, this is where the getRandom

function (used above in the threeInts example) comes from. How-
ever, you probably won’t need to use these methods directly in this
assignment.

In Risk.hs we have provided a type

newtype DieValue = DV { unDV :: Int }

for representing the result of rolling a six-sided die. We have also
provided an instance of Random for DieValue (allowing it to be used
with MonadRandom), and a definition

die :: Rand StdGen DieValue

die = getRandom

which represents the random outcome of rolling a fair six-sided die.

The Rules

The rules of attacking in Risk are as follows.

• There is an attacking army (containing some number of units) and
a defending army (containing some number of units).

• The attacking player may attack with up to three units at a time.
However, they must always leave at least one unit behind. That
is, if they only have three total units in their army they may only
attack with two, and so on.

• The defending player may defend with up to two units (or only
one if that is all they have).

• To determine the outcome of a single battle, the attacking and
defending players each roll one six-sided die for every unit they
have attacking or defending. So the attacking player rolls one, two,
or three dice, and the defending player rolls one or two dice.

• The attacking player sorts their dice rolls in descending order. The
defending player does the same.

http://hackage.haskell.org/package/MonadRandom
http://hackage.haskell.org/package/MonadRandom


cis 194: homework 11 4

• The dice are then matched up in pairs, starting with the highest
roll of each player, then the second-highest.

• For each pair, if the attacking player’s roll is higher, then one of
the defending player’s units die. If there is a tie, or the defending
player’s roll is higher, then one of the attacking player’s units die.

For example, suppose player A has 3 units and player B has 5. A
can attack with only 2 units, and B can defend with 2 units. So A
rolls 2 dice, and B does the same. Suppose A rolls a 3 and a 5, and B
rolls a 4 and a 3. After sorting and pairing up the rolls, we have

A B
5 4

3 3

A wins the first matchup (5 vs. 4), so one of B’s units dies. The sec-
ond matchup is won by B, however (since B wins ties), so one of A’s
units dies. The end result is that now A has 2 units and B has 4. If
A wanted to attack again they would only be able to attack with 1

unit (whereas B would still get to defend with 2—clearly this would
give B an advantage because the higher of B’s two dice rolls will get
matched with A’s single roll.)

Exercise 2
Given the definitions

type Army = Int

data Battlefield = Battlefield { attackers :: Army, defenders :: Army }

(which are also included in Risk.hs), write a function with the type

battle :: Battlefield -> Rand StdGen Battlefield

which simulates a single battle (as explained above) between two
opposing armies. That is, it should simulate randomly rolling the
appropriate number of dice, interpreting the results, and updating
the two armies to reflect casualties. You may assume that each player
will attack or defend with the maximum number of units they are
allowed.

Exercise 3
Of course, usually an attacker does not stop after just a single

battle, but attacks repeatedly in an attempt to destroy the entire de-
fending army (and thus take over its territory).

Now implement a function



cis 194: homework 11 5

invade :: Battlefield -> Rand StdGen Battlefield

which simulates an entire invasion attempt, that is, repeated calls
to battle until there are no defenders remaining, or fewer than two
attackers.

Exercise 4
Finally, implement a function

successProb :: Battlefield -> Rand StdGen Double

which runs invade 1000 times, and uses the results to compute a
Double between 0 and 1 representing the estimated probability that
the attacking army will completely destroy the defending army.
For example, if the defending army is destroyed in 300 of the 1000
simulations (but the attacking army is reduced to 1 unit in the other
700), successProb should return 0.3.

Exercise 5 (Optional)
Write a function

exactSuccessProb :: Battlefield -> Double

which computes the exact probability of success based on principles
of probability, without running any simulations. (This won’t give you
any particular practice with Haskell; it’s just a potentially interesting
challenge in probability theory.)


	Risk
	The Rand StdGen monad
	The Rules

