Custom Views & Event
Handling

Lecture 6

CIS 1951



Last Time...
App Lifecycle and Structure

» Navigation in SwiftUl: NavigationStack, NavigationLink, TabView
 Modal Presentations: .sheet, .alert
- MVVM architecture (which is what again?)

« @Observable, @Bindable, @Environment



This Week

Custom Views & Event Handling

« GeometryReader, safe area

- SwiftUl shapes, .fill/.stroke, .clipShape, .contentShape
» Understanding event propagation and handling

- Keyboard handling and text input events

» Custom gesture recognition in SwiftUI



GeometryReader
Why"?

Lets us build/customize responsive layouts based on different screen sizes and orientations

How SwiftUl determines app structure:

How do we know

1. Parent view proposes size for child view what size though?

2. Child view uses that to determine its size

3. Parent uses that size to position the child appropriately



GeometryReader

struct ContentView: View {
var body: some View A1
GeometryReader { proxy 1in . . . .
Tex¥(--Hello’ \,?,Oﬂé/!--) What is this View doing?
. frame(width: proxy.size.width *x 0.9)
.background(.red)



GeometryReader ( =

Note of Caution

GeometryReader can take up all available space by default

struct ContentView: View {
var body: some View {
VStack {
GeometryReader { proxy in
Text("Hello world!'")
. frame(width: proxy.size.width * 0.9)
.background(.red)
}
.background(.cyan)
Text("Goodbye world!")
.background(.green)

Goodbye world!




GeometryReader

_ Accessing geometry characteristics
Proxy variable has type GeometryProxy

func bounds(of: NamedCoordinateSpace) —-> CGRect?

Returns the given coordinate space’s bounds rectangle, converted to the local coordinate space.

func frame(in: CoordinateSpace) —> CGRect

Returns the container view's bounds rectangle, converted to a defined coordinate space.

What if you want to get the coordinates of
the View? Why might we want to do this?

func frame(in: some CoordinateSpaceProtocol) —-> CGRect

Returns the container view's bounds rectangle, converted to a defined coordinate space.

var size: CGSize

» Use .frame! (more details in live demo) The size of the container view.

var safeArealnsets: Edgelnsets

The safe area inset of the container view.

subscript<T>(Anchor<T>) —> T

Resolves the value of an anchor to the container view.

func transform(in: some CoordinateSpaceProtocol) -> AffineTransform3D?

The container view's 3D transform converted to a defined coordinate space.



Safe Areas in SwiftUI

Edit Event

By default, SwiftUl ensures views
are placed in “safe” areas of the
screen where navigation elements

won’t display

Safe area Safe area

(e.g. avoiding the navigation bar, tab
bar, toolbar, navigation title, etc.)

Image credit: https://swiftwithmajid.com/2021/11/03/managing-safe-area-in-swiftui/



https://swiftwithmajid.com/2021/11/03/managing-safe-area-in-swiftui/

Safe Areas in SwiftUl

Hello World

struct ContentView: View {
var body: some View {
NavigationStack {
/Stack {
Color.red
Text ("Random Text")

Random Text

}
.navigationTitle("Hello World")

¥




How do we ignore safe areas though?

lgnoresSafeArea() of course!



Safe Areas in SwiftUl

struct ContentView: View {
var body: some View {
NavigationStack A
/Stack {
Color.red
Text("Random Text")

L

.1gnoresSafeArea()
.navigationTitle("Hello World")

Hello World

Random Text




Safe Areas in SwiftUI

* You can customize the direction and region of ignored safe area

+ Also see .safeArealnset(), it lets you place a view outside the safe area



SwiftUl Default Shapes

struct ContentView: View {
var body: some View {
VStack {
Rectangle()
.Till(.red)
. frame(width: 200, height: 100)

RoundedRectangle(cornerRadius: 25)
.Till(.orange)
. frame(width: 200, height: 100)

UnevenRoundedRectangle(cornerRadii: .init(topLeading: 50, topTrailing: 50))
.Ffill(.yellow)
.frame(width: 200, height: 100)

Capsule()
.fill(.green)
.frame(width: 200, height: 100)

Ellipse()
.fill(.blue)
. frame(width: 200, height: 100)

Circle()
.fill(.purple)
.frame(width: 200, height: 100)




Shape Modifiers

- fill() does what you think, fills the Shape with the provided color (or gradient using
LinearGradient)

» .stroke() does what you think. It draws a border centered on the view’s edge, so half of the
border will be inside the view and half outside

- .strokeBorder() insets your view, and then draws a border entirely inside the original size



SwiftUl Default Shapes

struct ContentView: View {
var body: some View {
VStack {
Divider()
Circle()
.fill(.blue)
. frame(width: 150, height: 150)
Divider()
Circle()
.stroke(.red, lineWidth: 20)
. fill(.blue)
. frame(width: 150, height: 150)
Divider()
Circle()
.Fill(.blue)
.stroke(.red, lineWidth: 20)
.frame(width: 150, height: 150)
Divider()
Circle()
.Ffill(.blue)
.strokeBorder(.red, lineWidth: 20)
. frame(width: 150, height: 150)
Divider()




.Stroke .StrokeBorder




Sidenote: Canvas

Immediate mode drawing, just like CIS 1200

struct ContentView: View {
var body: some View {
Canvas { gctx, size 1in
gctx.translateBy(x: 45, y: 45)

let path = Path(ellipseIn: CGRect(x: @, y: @, width: 10, height: 10))
gctx. fill(path, with: .color(.white))

}
. frame(width: 100, height: 100)

.background(.blue)




.clipShapel)

» Clips a view’s borders to the shape given

struct ContentView: View { od text ina
var body: some View { \ y
Text("Clipped text in a circle")

. LineLimit (1)
. frame(width: 200, height: 100)
. foregroundColor(Color.black)
.background(Color.green)
. clipShape(Circle())




Events and Gesture Handling
In SwiftUl

» Events such as taps, swipes, and other gestures are automatically handled by Gestures such
as:

- onTapGesture, .onTapGesture(count: 3)
- onLongPressGesture, onLongPressGesture(minimumDuration: 5)

- DragGesture() struct ContentView: View {

var body: some View {
R Text("Tap me!")
- MagnificationGesture() .padding ()
.background(.red)
) - .onTapGesture {
RotationGesture() orint("Tapped")
}

» More details in the live demo! ’



Events and Gesture Handling

What if nested views all have gesture handlers, which one is used?

The event starts out at the inner most view, and is handled by the inner most event recognizer.
We say the event is “consumed,” so no other handlers on outer views get a chance to respond.

What if we want to change this behavior so multiple gestures work at the same time?
- Check out the .simultaneousGesture() for more control over priority!
What if there are multiple gesture handlers on the same view we want to control?

- Check out .exclusively(), .simultaneously(), and .sequentially()



.contentShape()

» Modifies the interactable shape of the
view during hit-testing

struct ContentView: View {
var body: some View {
Button(action: {
print("Button clicked")
P A
Text("Click Me!")
. frame(width: 300, height: 300)

.background(.green) Clicking here
b | doesn’t trigger
.contentShape(Circle()) the button




Keyboard Handling and Text Input Events

struct ContentView: View {

We can also handle inputs and events @FocusState private var focused: Bool

| State privat key = "'
directly from the keyboard! a private var key
var body: some View {

» Note: The view must be focusable to TeXt(g:é’éing 0

respond to key presses, :backg round(.green)
see .focusable(). This brings up the . focusable()
keyboard when focused . focused($focused)

.onKeyPress { press 1n
key += press.characters

* Also note the “return .handled” here. print("\(press.characters) pressed!")
This is saying the event has been \ return .handlea

handled, so it. beoom_es consumed. If .onAppear {

we returned .ignored instead, then the focused = true

event could still be handled by another !

handler outside this view y



Custom Gesture Recognition

Each gesture has some of it’'s own features/properties, so check
out thelr documentation!

We can use .onChanged and .onEnded for many to perform
actions based on the gestures.



Gesture Customization

We can also customize our own gestures! What do you think this does”?

struct ContentView: View {1
var body: some View {
Text("Hello world!'")

. padding()

.background(.green)

.gesture(DragGesture(minimumDistance: 3.0, coordinateSpace: .local)

.0onEnded { value in
switch(value.translation.width, value.translation.height) {

case (...0, -30...30): print("left")
case (0..., -30...30): print("right")
case (-100...100, ...0): print("up")
case (-100...100, 0...): print("down")
default: print('"none")



Gesture Creation

You can also create your own gestures, just make a struct that conforms
to Gesture!

Most of the time this is not needed, as the default gestures cover almost
everything you need.

Look up the documentation for it!



Custom Gesture Recognition

Try creating your own in the live demo later!



Bubble Game Demo




Bubble Game Demo



https://github.com/cis1951/lec6-code

Recap

Custom Views & Event Handling

« GeometryReader, safe area

- SwiftUl shapes, .fill/.stroke, .clipShape, .contentShape
» Understanding event propagation and handling

- Keyboard handling and text input events

» Custom gesture recognition in SwiftUI



See you next week!

Homework 2 Trivia Game:
 Due on Thursday, 10/16

e Focuses on lectures 3-5



