
CIS 1951

Lecture 6

Custom Views & Event 
Handling



Last Time…
App Lifecycle and Structure

• Navigation in SwiftUI: NavigationStack, NavigationLink, TabView


• Modal Presentations: .sheet, .alert


• MVVM architecture (which is what again?)


• @Observable, @Bindable, @Environment



This Week
Custom Views & Event Handling

• GeometryReader, safe area


• SwiftUI shapes, .fill/.stroke, .clipShape, .contentShape


• Understanding event propagation and handling


• Keyboard handling and text input events


• Custom gesture recognition in SwiftUI



GeometryReader
Why?

Lets us build/customize responsive layouts based on different screen sizes and orientations


How SwiftUI determines app structure:


1. Parent view proposes size for child view


2. Child view uses that to determine its size


3. Parent uses that size to position the child appropriately

How do we know 
what size though?



GeometryReader

What is this View doing?

struct ContentView: View { 
    var body: some View { 
        GeometryReader { proxy in 
            Text("Hello, World!") 
                .frame(width: proxy.size.width * 0.9) 
                .background(.red) 
        } 
    } 
}



GeometryReader
Note of Caution

GeometryReader can take up all available space by default

struct ContentView: View { 
    var body: some View { 
        VStack { 
            GeometryReader { proxy in 
                Text("Hello world!") 
                    .frame(width: proxy.size.width * 0.9) 
                    .background(.red) 
            } 
            .background(.cyan) 
            Text("Goodbye world!") 
                .background(.green) 
        } 
    } 
}



GeometryReader

Proxy variable has type GeometryProxy


What if you want to get the coordinates of 
the View? Why might we want to do this?


• Use .frame! (more details in live demo)



Safe Areas in SwiftUI

By default, SwiftUI ensures views 
are placed in “safe” areas of the 
screen where navigation elements 
won’t display


(e.g. avoiding the navigation bar, tab 
bar, toolbar, navigation title, etc.)

Image credit: https://swiftwithmajid.com/2021/11/03/managing-safe-area-in-swiftui/

https://swiftwithmajid.com/2021/11/03/managing-safe-area-in-swiftui/


Safe Areas in SwiftUI

struct ContentView: View { 
    var body: some View { 
        NavigationStack { 
            ZStack { 
                Color.red 
                Text("Random Text") 
            } 
           .navigationTitle("Hello World") 
        } 
    } 
}



How do we ignore safe areas though?

.ignoresSafeArea() of course!



Safe Areas in SwiftUI

struct ContentView: View { 
    var body: some View { 
        NavigationStack { 
            ZStack { 
                Color.red 
                Text("Random Text") 
            } 
            .ignoresSafeArea() 
            .navigationTitle("Hello World") 
        } 
    } 
}



Safe Areas in SwiftUI

• You can customize the direction and region of ignored safe area


• Also see .safeAreaInset(), it lets you place a view outside the safe area



SwiftUI Default Shapes
struct ContentView: View { 
    var body: some View { 
        VStack { 
            Rectangle() 
                .fill(.red) 
                .frame(width: 200, height: 100) 

            RoundedRectangle(cornerRadius: 25) 
                .fill(.orange) 
                .frame(width: 200, height: 100) 

            UnevenRoundedRectangle(cornerRadii: .init(topLeading: 50, topTrailing: 50)) 
                .fill(.yellow) 
                .frame(width: 200, height: 100) 

            Capsule() 
                .fill(.green) 
                .frame(width: 200, height: 100) 

            Ellipse() 
                .fill(.blue) 
                .frame(width: 200, height: 100) 

            Circle() 
                .fill(.purple) 
                .frame(width: 200, height: 100) 
        } 
    } 
}



Shape Modifiers

• .fill() does what you think, fills the Shape with the provided color (or gradient using 
LinearGradient)


• .stroke() does what you think. It draws a border centered on the view’s edge, so half of the 
border will be inside the view and half outside


• .strokeBorder() insets your view, and then draws a border entirely inside the original size



SwiftUI Default Shapes
struct ContentView: View { 
    var body: some View { 
        VStack { 
            Divider() 
            Circle() 
                .fill(.blue) 
                .frame(width: 150, height: 150) 
            Divider() 
            Circle() 
                .stroke(.red, lineWidth: 20) 
                .fill(.blue) 
                .frame(width: 150, height: 150) 
            Divider() 
            Circle() 
                .fill(.blue) 
                .stroke(.red, lineWidth: 20) 
                .frame(width: 150, height: 150) 
            Divider() 
            Circle() 
                .fill(.blue) 
                .strokeBorder(.red, lineWidth: 20) 
                .frame(width: 150, height: 150) 
            Divider() 
        } 
    } 
}





Sidenote: Canvas

struct ContentView: View { 
    var body: some View { 
        Canvas { gctx, size in 
            gctx.translateBy(x: 45, y: 45) 
             
            let path = Path(ellipseIn: CGRect(x: 0, y: 0, width: 10, height: 10)) 
            gctx.fill(path, with: .color(.white)) 
        } 
        .frame(width: 100, height: 100) 
        .background(.blue) 
    } 
}

Immediate mode drawing, just like CIS 1200



.clipShape()

struct ContentView: View { 
    var body: some View { 
        Text("Clipped text in a circle") 
            .lineLimit(1) 
            .frame(width: 200, height: 100) 
            .foregroundColor(Color.black) 
            .background(Color.green) 
            .clipShape(Circle()) 
    } 
}

• Clips a view’s borders to the shape given



Events and Gesture Handling
In SwiftUI

• Events such as taps, swipes, and other gestures are automatically handled by Gestures such 
as:


- onTapGesture, .onTapGesture(count: 3)


- onLongPressGesture, onLongPressGesture(minimumDuration: 5)


- DragGesture()


- MagnificationGesture()


- RotationGesture()


• More details in the live demo!

struct ContentView: View { 
    var body: some View { 
        Text("Tap me!") 
            .padding() 
            .background(.red) 
            .onTapGesture { 
                print("Tapped") 
            } 
    } 
}



Events and Gesture Handling

What if nested views all have gesture handlers, which one is used?


The event starts out at the inner most view, and is handled by the inner most event recognizer. 
We say the event is “consumed,” so no other handlers on outer views get a chance to respond.


What if we want to change this behavior so multiple gestures work at the same time?


- Check out the .simultaneousGesture() for more control over priority!


What if there are multiple gesture handlers on the same view we want to control?


- Check out .exclusively(), .simultaneously(), and .sequentially()



.contentShape()

struct ContentView: View { 
    var body: some View { 
        Button(action: { 
            print("Button clicked") 
        }) { 
            Text("Click Me!") 
                .frame(width: 300, height: 300) 
                .background(.green) 
        } 
        .contentShape(Circle()) 
    } 
}

• Modifies the interactable shape of the 
view during hit-testing

Clicking here 
doesn’t trigger 
the button



Keyboard Handling and Text Input Events

We can also handle inputs and events 
directly from the keyboard!


• Note: The view must be focusable to 
respond to key presses, 
see .focusable(). This brings up the 
keyboard when focused


• Also note the “return .handled” here. 
This is saying the event has been 
handled, so it becomes consumed. If 
we returned .ignored instead, then the 
event could still be handled by another 
handler outside this view

struct ContentView: View { 
    @FocusState private var focused: Bool 
    @State private var key = "" 
     
    var body: some View { 
        Text(key) 
            .padding() 
            .background(.green) 
            .focusable() 
            .focused($focused) 
            .onKeyPress { press in 
                key += press.characters 
                print("\(press.characters) pressed!") 
                return .handled 
            } 
            .onAppear { 
                focused = true 
            } 
    } 
}



Custom Gesture Recognition

Each gesture has some of it’s own features/properties, so check 
out their documentation!


We can use .onChanged and .onEnded for many to perform 
actions based on the gestures.




Gesture Customization

We can also customize our own gestures! What do you think this does?


struct ContentView: View { 
    var body: some View { 
        Text("Hello world!") 
            .padding() 
            .background(.green) 
            .gesture(DragGesture(minimumDistance: 3.0, coordinateSpace: .local) 
                .onEnded { value in 
                    switch(value.translation.width, value.translation.height) { 
                        case (...0, -30...30):  print("left") 
                        case (0..., -30...30):  print("right") 
                        case (-100...100, ...0):  print("up") 
                        case (-100...100, 0...):  print("down") 
                        default:  print("none") 
                    } 
                } 
            ) 
    } 
}



Gesture Creation

You can also create your own gestures, just make a struct that conforms 
to Gesture!


Most of the time this is not needed, as the default gestures cover almost 
everything you need.


Look up the documentation for it!



Custom Gesture Recognition

Try creating your own in the live demo later!




Bubble Game Demo



Bubble Game Demo

https://github.com/cis1951/lec6-code

https://github.com/cis1951/lec6-code


Recap
Custom Views & Event Handling

• GeometryReader, safe area


• SwiftUI shapes, .fill/.stroke, .clipShape, .contentShape


• Understanding event propagation and handling


• Keyboard handling and text input events


• Custom gesture recognition in SwiftUI



See you next week!

Homework 2 Trivia Game:


• Due on Thursday, 10/16 

• Focuses on lectures 3-5


